Kruskal's tree theorem in a constructive theory of inductive definitions

被引:0
|
作者
Seisenberger, M [1 ]
机构
[1] Univ Munich, Inst Math, D-80333 Munich, Germany
关键词
Kruskal's theorem; finite trees; well quasi orders;
D O I
暂无
中图分类号
N09 [自然科学史]; B [哲学、宗教];
学科分类号
01 ; 0101 ; 010108 ; 060207 ; 060305 ; 0712 ;
摘要
We give a constructive proof of Kruskal's tree theorem by using an inductive characterization of well quasi orders.
引用
收藏
页码:241 / 255
页数:15
相关论文
共 50 条
  • [1] Generalized inductive definitions in constructive set theory
    Rathjen, Michael
    [J]. From Sets and Types to Topology and Analysis: TOWARDS PRACTICABLE FOUNDATIONS FOR CONSTRUCTIVE MATHEMATICS, 2005, 48 : 23 - 40
  • [2] Certified Kruskal's Tree Theorem
    Sternagel, Christian
    [J]. CERTIFIED PROGRAMS AND PROOFS, CPP 2013, 2013, 8307 : 178 - 193
  • [4] A Constructive Proof of the Topological Kruskal Theorem
    Goubault-Larrecq, Jean
    [J]. MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2013, 2013, 8087 : 22 - 41
  • [5] Kruskal's Tree Theorem for Acyclic Term Graphs
    Moser, Georg
    Schett, Maria A.
    [J]. ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2016, (225): : 25 - 34
  • [6] AN ANALYSIS OF TENNENBAUM'S THEOREM IN CONSTRUCTIVE TYPE THEORY
    Hermes, Marc
    Kirst, Dominik
    [J]. LOGICAL METHODS IN COMPUTER SCIENCE, 2024, 20 (01)
  • [7] An intuitionistic proof of Kruskal's theorem
    Veldman, W
    [J]. ARCHIVE FOR MATHEMATICAL LOGIC, 2004, 43 (02) : 215 - 264
  • [8] An intuitionistic proof of Kruskal’s theorem
    Wim Veldman
    [J]. Archive for Mathematical Logic, 2004, 43 : 215 - 264
  • [9] A generalization of Kruskal's theorem on tensor decomposition
    Lovitz, Benjamin
    Petrov, Fedor
    [J]. FORUM OF MATHEMATICS SIGMA, 2023, 11
  • [10] A generalization of Kruskal-Katona's theorem
    Amata, Luca
    Crupi, Marilena
    [J]. ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2020, 28 (02): : 35 - 51