Piezoelectric-based optical modulator for miniaturized wireless medical implants

被引:1
|
作者
Edmunds, Jordan L. [1 ]
Sonmezoglu, Soner [1 ,2 ]
Maharbiz, Michel M. [1 ,3 ,4 ]
机构
[1] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94704 USA
[2] Northeastern Univ, Dept Elect & Comp Engn, Boston, MA 02115 USA
[3] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94704 USA
[4] Chan Zuckerberg Biohub, San Francisco, CA 94158 USA
关键词
ALUMINUM NITRIDE;
D O I
10.1364/OE.474832
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Optical links for medical implants have recently been explored as an attractive option primarily because it provides a route to ultrasmall wireless implant systems. Existing devices for optical communication either are not CMOS compatible, require large bias voltages to operate, or consume substantial amounts of power. Here, we present a high-Q CMOS-compatible electrooptic modulator that enables establishing an optical data uplink to implants. The modulator acts as a pF-scale capacitor, requires no bias voltage, and operates at CMOS voltages of down to 0.5V. We believe this technology would provide a path towards the realization of millimeter (mm)- and sub-mm scale wireless implants for use in bio-sensing applications. (C) 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
引用
收藏
页码:43664 / 43677
页数:14
相关论文
共 50 条
  • [1] PIEZOELECTRIC-BASED BIOSENSORS
    WALTON, PW
    BUTLER, ME
    OFLAHERTY, MR
    [J]. BIOCHEMICAL SOCIETY TRANSACTIONS, 1991, 19 (01) : 44 - 48
  • [2] Charge pump design for high-voltage biasing applications in piezoelectric-based miniaturized robots
    Saiz-Vela, A.
    Miribel-Catala, P.
    Colomer, J.
    Puig-Vidal, M.
    Samitier, J.
    [J]. ANALOG INTEGRATED CIRCUITS AND SIGNAL PROCESSING, 2009, 59 (02) : 169 - 184
  • [3] Charge pump design for high-voltage biasing applications in piezoelectric-based miniaturized robots
    A. Saiz-Vela
    P. Miribel-Catala
    J. Colomer
    M. Puig-Vidal
    J. Samitier
    [J]. Analog Integrated Circuits and Signal Processing, 2009, 59 : 169 - 184
  • [4] Piezoelectric-based apparatus for strain tuning
    Hicks, Clifford W.
    Barber, Mark E.
    Edkins, Stephen D.
    Brodsky, Daniel O.
    Mackenzie, Andrew P.
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2014, 85 (06):
  • [5] Piezoelectric-based fluid bulk modulus sensor
    Niezrecki, C
    Schueller, JK
    Balasubramanian, K
    [J]. JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2004, 15 (12) : 893 - 899
  • [6] A Magnetic/Piezoelectric-Based Thermal Energy Harvester
    Chung, Tien-Kan
    Shukla, Ujjwal
    Tseng, Chia-Yuan
    Chen, Chin-Chung
    Wang, Chieh-Min
    [J]. ACTIVE AND PASSIVE SMART STRUCTURES AND INTEGRATED SYSTEMS 2013, 2013, 8688
  • [7] A novel piezoelectric-based RF BAW filter
    Cong, P
    Ren, TL
    Liu, LT
    [J]. MICROELECTRONIC ENGINEERING, 2003, 66 (1-4) : 779 - 784
  • [8] A Review on Mechanisms for Piezoelectric-Based Energy Harvesters
    Elahi, Hassan
    Eugeni, Marco
    Gaudenzi, Paolo
    [J]. ENERGIES, 2018, 11 (07)
  • [9] A Synthetic Shunt for Piezoelectric-Based State Switching
    Lopp, Garrett K.
    Kauffman, Jeffrey L.
    [J]. ACTIVE AND PASSIVE SMART STRUCTURES AND INTEGRATED SYSTEMS XII, 2018, 10595
  • [10] Piezoelectric-based energy harvesting in bridge systems
    Zhang, Ye
    Cai, Steve C. S.
    Deng, Lu
    [J]. JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2014, 25 (12) : 1414 - 1428