Twenty-six multiparous Holstein cows were used to examine the effects of prepartum energy and protein intake on periparturient metabolism and lactation performance. Two levels of energy, 1.65 Mcal/kg of net energy for lactation (NEL) and 1.30 Mcal/kg of NEL, and two levels of protein, 17.0% CP and 12.5% CP, were tested according to a factorial arrangement in a randomized block design. Dietary treatments were fed ad libitum from 21 d before expected calving date to the day of calving. After calving, all cows were fed the same diet. Increased nutrient density did not affect prepartum feed intake, but postpartum intake was higher for cows fed the high-energy diets. Treatment had no effect on cow body weight and body condition score, however, cows fed the high-energy diets were in greater energy balance throughout the study. Milk and milk component yields were unaffected by treatment. Cows fed the high-energy diets had lower plasma nonesterified fatty acid concentrations than cows fed the low energy diets (354.3 vs. 439.9 mumol/L). Hepatic triglyceride concentrations were lower for cows on the high-energy diets than for those on the low-energy diets. Liver glycogen was unaffected by treatment. Acetyl-CoA carboxylase and fatty acid synthase abundance was significantly lower at calving than pretreatment, and higher for cows on the high-energy diets relative to those on the low-energy diets. The activity of acetyl-CoA carboxylase and lipoprotein lipase was greatly decreased with the onset of lactation. Increased protein intake prepartum resulted in elevated plasma beta-hydroxybutyrate concentrations postpartum, Prepartum plasma urea nitrogen was increased and 3-methylhistidine decreased by the high protein treatments. Overall, increased energy density of prepartum diets had beneficial effects on feed intake and lipid metabolism but did not improve lactation performance. Increasing the protein content of the prepartum diet did not appear to confer any advantages to cow productivity.