A refined inverse hyperbolic shear deformation theory for bending analysis of functionally graded porous plates

被引:3
|
作者
Reddy, B. Sidda [1 ]
Reddy, K. Vijaya Kumar [2 ]
机构
[1] Rajeev Gandhi Mem Coll Engn & Technol, Kurnool, AP, India
[2] Jawaharlal Nehru Technol Univ, Hyderabad, Telangana, India
来源
关键词
Functionally graded porous plates; Bending analysis; Rule of Mixtures; Porosity distribution; Porosity volume fraction; CYLINDRICAL PRESSURE-VESSELS; NONLINEAR VIBRATION ANALYSIS; CIRCULAR GRAPHENE SHEET; THERMOMECHANICAL VIBRATION; ISOGEOMETRIC ANALYSIS; STATIC ANALYSIS; STRESS; NANOPLATE; MODEL; DISKS;
D O I
10.22059/jcamech.2020.308469.544
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The modern engineering structures require the advanced engineering materials to resist the high temperatures and to provide high stiffness. In particular the functionally graded porous materials (FGPMs) introduced are expected to have these desired properties, consequently eliminating local stress concentration and de-lamination. In the present paper, a new shear strains shape function is chosen to research the bending analysis of functionally graded plates (FGPs) with uneven symmetrical, uneven asymmetrical and even distributions of porosity. The material properties of uneven porosity distributions along the thickness of the FGPs vary with cosine function. The present theory includes the influence of thickness stretching. This theory also fulfills the nullity of the shear stresses in the transverse direction on the top and bottom of the plate, thus avoids the use of a shear correction factor. The virtual displacement principle is employed to develop the equilibrium equations for porous FGPs. The Navier's method is used to obtain the solutions of porous FGPs for simply supported (SS) conditions. The accuracy of the developed theory is established with numerical results of perfect and porous FGPs available in the open source. The transverse displacements and stress results have been reported and studied for evenly, unevenly symmetrical and unevenly asymmetrical distributions with different porosity volume fraction (PVF), thickness ratios and aspect ratios. From the numerical results it is concluded that the type of porosity distribution needs to be considered as a key factor in the optimal design of the porous FGPs.
引用
收藏
页码:417 / 431
页数:15
相关论文
共 50 条
  • [1] Bending analysis of functionally graded porous plates via a refined shear deformation theory
    Zine, Abdallah
    Bousahla, Abdelmoumen Anis
    Bourada, Fouad
    Benrahou, Kouider Halim
    Tounsi, Abdeldjebbar
    Bedia, E. A. Adda
    Mahmoud, S. R.
    Tounsi, Abdelouahed
    [J]. COMPUTERS AND CONCRETE, 2020, 26 (01): : 63 - 74
  • [2] Bending analysis of functionally graded porous plates via a refined shear deformation theory
    Zine A.
    Bousahla A.A.
    Bourada F.
    Benrahou K.H.
    Tounsi A.
    Bedia E.A.A.
    Mahmoud S.R.
    Tounsi A.
    [J]. Computers and Concrete, 2020, 26 (02): : 63 - 74
  • [3] A New Hyperbolic Shear Deformation Theory for Bending Analysis of Functionally Graded Plates
    Daouadji, Tahar Hassaine
    Henni, Abdelaziz Hadj
    Tounsi, Abdelouahed
    El Abbes, Adda Bedia
    [J]. MODELLING AND SIMULATION IN ENGINEERING, 2012, 2012
  • [4] A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates
    Tounsi, Abdelouahed
    Houari, Mohammed Sid Ahmed
    Benyoucef, Samir
    Bedia, El Abbas Adda
    [J]. AEROSPACE SCIENCE AND TECHNOLOGY, 2013, 24 (01) : 209 - 220
  • [5] Generalized shear deformation theory for bending analysis of functionally graded plates
    Zenkour, AM
    [J]. APPLIED MATHEMATICAL MODELLING, 2006, 30 (01) : 67 - 84
  • [6] Thermo-elastic bending analysis of functionally graded sandwich plates by hyperbolic shear deformation theory
    Rouzegar, J.
    Gholami, M.
    [J]. SCIENTIA IRANICA, 2015, 22 (02) : 561 - 577
  • [7] Vibration and the Buckling Response of Functionally Graded Plates According to a Refined Hyperbolic Shear Deformation Theory
    Singh, J.
    Kumar, A.
    [J]. MECHANICS OF COMPOSITE MATERIALS, 2023, 59 (04) : 725 - 742
  • [8] Vibration and the Buckling Response of Functionally Graded Plates According to a Refined Hyperbolic Shear Deformation Theory
    J. Singh
    A. Kumar
    [J]. Mechanics of Composite Materials, 2023, 59 : 725 - 742
  • [9] A refined hyperbolic shear deformation theory for bending of functionally graded beams based on neutral surface position
    Zouatnia, Nafissa
    Hadji, Lazreg
    Kassoul, Amar
    [J]. STRUCTURAL ENGINEERING AND MECHANICS, 2017, 63 (05) : 683 - 689
  • [10] Analytical solution for bending and buckling analysis of functionally graded plates using inverse trigonometric shear deformation theory
    Kulkarni, Kamlesh
    Singh, B. N.
    Maiti, D. K.
    [J]. COMPOSITE STRUCTURES, 2015, 134 : 147 - 157