Accelerating Real-time LiDAR Data Processing using GPUs

被引:0
|
作者
Venugopal, Vivek [1 ]
Kannan, Suresh [1 ]
机构
[1] United Technol Res Ctr, E Hartford, CT 06108 USA
关键词
LiDAR; parallel processing; graphics processing units; unmanned autonomous vehicles;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Light Detection and Ranging (LiDAR) sensors are used for acquiring high density topographical data with extremely high spatial resolution. Many LiDAR-based applications, e. g. unmanned autonomous ground and air vehicles require real-time processing capabilities for navigation. The processing of the massive LiDAR data is time consuming due to the magnitude of the data produced and also due to the computationally iterative nature of the algorithms. Graphics Processing Units (GPU) consist of massively parallel cores, have high memory bandwidth and are being widely used as specialized hardware accelerators. A GPU-based parallel LiDAR processing algorithm is implemented with GPU specific memory architecture optimizations. The GPU implementation in this study significantly reduces the processing time of the LiDAR data as compared to CPU-based implementation.
引用
收藏
页码:1168 / 1171
页数:4
相关论文
共 50 条
  • [1] Real-time data processing with GPUs in high energy physics
    vom Bruch, D.
    JOURNAL OF INSTRUMENTATION, 2020, 15 (06)
  • [2] Real-Time Road Segmentation Using LiDAR Data Processing on an FPGA
    Lyu, Yecheng
    Bai, Lin
    Huang, Xinming
    2018 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2018,
  • [3] Real-Time Processing of Multi-Channel SAR Data with GPUs
    Often, Matern
    Vlothuizen, Wouter
    Spreeuw, Hanno
    Varbanescu, Ana
    2016 13TH EUROPEAN RADAR CONFERENCE (EURAD), 2016, : 65 - 68
  • [4] Multi-GPUs Gaussian Filtering for Real-Time Big Data Processing
    Zhang, Chaolong
    Xu, Yuanping
    He, Jia
    Lu, Jun
    Lu, Li
    Xu, Zhijie
    PROCEEDINGS OF 2016 10TH INTERNATIONAL CONFERENCE ON SOFTWARE, KNOWLEDGE, INFORMATION MANAGEMENT & APPLICATIONS (SKIMA), 2016, : 231 - 236
  • [5] GPUs for real-time processing in HEP trigger systems
    Lamanna, G.
    Ammendola, R.
    Bauce, M.
    Biagioni, A.
    Fantechi, R.
    Fiorini, M.
    Giagu, S.
    Graverini, E.
    Lamanna, G.
    Lonardo, A.
    Messina, A.
    Pantaleo, F.
    Paolucci, P. S.
    Piandani, R.
    Rescigno, M.
    Simula, F.
    Sozzi, M.
    Vicini, P.
    20TH INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY AND NUCLEAR PHYSICS (CHEP2013), PARTS 1-6, 2014, 513
  • [6] GPUs for real-time processing in HEP trigger systems
    Ammendola, R.
    Biagioni, A.
    Deri, L.
    Fiorini, M.
    Frezza, O.
    Lamanna, G.
    Lo Cicero, F.
    Lonardo, A.
    Messina, A.
    Sozzi, M.
    Pantaleo, F.
    Paolucci, P. S.
    Rossetti, D.
    Simula, F.
    Tosoratto, L.
    Vicini, P.
    15TH INTERNATIONAL WORKSHOP ON ADVANCED COMPUTING AND ANALYSIS TECHNIQUES IN PHYSICS RESEARCH (ACAT2013), 2014, 523
  • [7] DIGITAL REAL-TIME LIDAR DATA RECORDING, PROCESSING AND DISPLAY SYSTEM
    UTHE, EE
    ALLEN, RJ
    OPTICAL AND QUANTUM ELECTRONICS, 1975, 7 (03) : 121 - 129
  • [8] FPGA-based real-time data processing for accelerating reconstruction at LHCb
    Lazzari, F.
    Baldini, W.
    Bassi, G.
    Contu, A.
    Dorigo, M.
    Fantechi, R.
    Giambastiani, L.
    Morello, M. J.
    Punzi, G.
    Sticchi, M.
    Tuci, G.
    JOURNAL OF INSTRUMENTATION, 2022, 17 (04)
  • [9] Accelerating Unstructured Graph Data Processing on GPUs
    Pan, Xiaohui
    2ND INTERNATIONAL CONFERENCE ON SIMULATION AND MODELING METHODOLOGIES, TECHNOLOGIES AND APPLICATIONS (SMTA 2015), 2015, : 29 - 33
  • [10] Leveraging graphics processing units (GPUs) for real-time seismic interpretation
    Kadlec B.J.
    Dorn G.A.
    Leading Edge (Tulsa, OK), 2010, 29 (01): : 60 - 66