AIRBORNE WIND ENERGY SYSTEM Composite Production Methods for a Cost Effective Airborne Wind Energy System

被引:0
|
作者
Fagan, Edward M. [1 ]
Engelen, Sebastiaan [2 ]
Bonnin, Vincent [2 ]
Kruijff, Michiel [2 ]
机构
[1] Natl Univ Ireland Galway, Galway, Ireland
[2] Ampyx Power BV, The Hague, Netherlands
基金
爱尔兰科学基金会;
关键词
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Airborne Wind Energy Systems (AWES) are an emerging renewable energy generation technology that use autonomously guided kites or aircraft to harvest wind power. The challenge for AWES aircraft designer is to produce a structure competitive with existing low-cost wind technology while remaining lightweight and safety compliant. This work investigates suitable materials and production methods for the wing of a multi-megawatt AWES, using a newly developed technical cost model of the wing manufacturing process. The cost model provides a breakdown of the material, labour and equipment costs for resin infusion and out-of-autoclave prepreg production methods. Analysing the breakdown of the costs for the spar caps, shear webs and the aerodynamic skins of the wing will help guide the choice of production method for a low-cost and high-performance AWES.
引用
收藏
页码:26 / 34
页数:9
相关论文
共 50 条
  • [1] The value of airborne wind energy to the electricity system
    Malz, Elena C.
    Walter, Viktor
    Goransson, Lisa
    Gros, Sebastien
    [J]. WIND ENERGY, 2022, 25 (02) : 281 - 299
  • [2] Control of an airborne wind energy system with a Magnus effect
    Hably, Ahmad
    Dumon, Jonathan
    Smith, Garrett
    [J]. 2016 AMERICAN CONTROL CONFERENCE (ACC), 2016, : 4978 - 4983
  • [3] Attitude Tracking Control of an Airborne Wind Energy System
    Li, Haocheng
    Olinger, David J.
    Demetriou, Michael A.
    [J]. 2015 EUROPEAN CONTROL CONFERENCE (ECC), 2015, : 1510 - 1515
  • [4] Apparent Attitude Tracking of Airborne Wind Energy System
    Li, Haocheng
    Olinger, David J.
    Demetriou, Michael A.
    [J]. JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2019, 42 (04) : 958 - 962
  • [5] Airborne Wind Energy
    朱盛榕
    [J]. 热能动力工程, 2017, 32 (05) : 7 - 7
  • [6] Airborne Wind Energy
    Ahrens, Uwe
    Diehl, Moritz
    Schmehl, Roland
    [J]. Green Energy and Technology, 2013,
  • [7] Aerodynamic analysis of Ampyx's airborne wind energy system
    Vimalakanthan, K.
    Caboni, M.
    Schepers, J. G.
    Pechenik, E.
    Williams, P.
    [J]. SCIENCE OF MAKING TORQUE FROM WIND (TORQUE 2018), 2018, 1037
  • [8] Aerodynamic Parameter Identification for an Airborne Wind Energy Pumping System
    Licitra, G.
    Williams, P.
    Gillis, J.
    Ghandchi, S.
    Sieberling, S.
    Ruiterkamp, R.
    Diehl, M.
    [J]. IFAC PAPERSONLINE, 2017, 50 (01): : 11951 - 11958
  • [9] Unconventional fly-gen airborne wind energy system
    Sarmiento, R. Avella
    Cruz, F. J. Gonzalez
    [J]. ENGINEERING RESEARCH EXPRESS, 2024, 6 (01):
  • [10] Hybrid modeling approach for the tether of an airborne wind energy system
    Duda D.F.
    Fuest H.
    Islam T.
    Ostermann T.
    Moormann D.
    [J]. CEAS Aeronautical Journal, 2022, 13 (03) : 627 - 637