Impaired capacity to restore proteostasis in the aged brain after ischemia: Implications for translational brain ischemia research

被引:11
|
作者
Wang, Zhuoran [1 ]
Yang, Wei [1 ]
机构
[1] Duke Univ, Ctr Perioperat Organ Protect, Dept Anesthesiol, Med Ctr, Durham, NC 27710 USA
基金
美国国家卫生研究院;
关键词
Aging; Brain ischemia; Cardiac arrest; Stroke; Protein homeostasis; Neuroprotection; UNFOLDED PROTEIN RESPONSE; UBIQUITIN-PROTEASOME SYSTEM; FOCAL CEREBRAL-ISCHEMIA; ENDOPLASMIC-RETICULUM STRESS; OXIDATIVE STRESS; RAT MODEL; CONFERS NEUROPROTECTION; FUNCTIONAL RECOVERY; O-GLCNACYLATION; CARDIAC-ARREST;
D O I
10.1016/j.neuint.2018.12.018
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Brain ischemia induced by cardiac arrest or ischemic stroke is a severe form of metabolic stress that substantially disrupts cellular homeostasis, especially protein homeostasis (proteostasis). As proteostasis is fundamental for cellular and organismal health, cells have developed a complex network to restore proteostasis impaired by stress. Many components of this network - including ubiquitination, small ubiquitin-like modifier (SUMO) conjugation, autophagy, and the unfolded protein response (UPR) - are activated in the post-ischemic brain, and play a crucial role in cell survival and recovery of neurologic function. Importantly, recent studies have shown that ischemia-induced activation of these proteostasis-related pathways in the aged brain is impaired, indicating an aging-related decline in the self-healing capacity of the brain. This impaired capacity is a significant factor for consideration in the field of brain ischemia because the vast majority of cardiac arrest and stroke patients are elderly. In this review, we focus on the effects of aging on these critical proteostasis-related pathways in the brain, and discuss their implications in translational brain ischemia research.
引用
收藏
页码:87 / 93
页数:7
相关论文
共 50 条
  • [1] The two pathophysiologies of focal brain ischemia: implications for translational stroke research
    Hossmann, Konstantin-Alexander
    JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2012, 32 (07): : 1310 - 1316
  • [2] SUMOylation in brain ischemia: Patterns, targets, and translational implications
    Bernstock, Joshua D.
    Yang, Wei
    Ye, Daniel G.
    Shen, Yuntian
    Pluchino, Stefano
    Lee, Yang-Ja
    Hallenbeck, John M.
    Paschen, Wulf
    JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2018, 38 (01): : 5 - 16
  • [3] ISCHEMIA IN AGED BRAIN
    HOYER, S
    GERONTOLOGY, 1987, 33 (3-4) : 203 - 206
  • [4] Role of mTORC1 Controlling Proteostasis after Brain Ischemia
    Perez-Alvarez, Maria J.
    Gonzalez, Mario Villa
    Benito-Cuesta, Irene
    Wandosell, Francisco G.
    FRONTIERS IN NEUROSCIENCE, 2018, 12
  • [5] Inflammation of the brain after ischemia
    Kogure, K
    Yamasaki, Y
    Matsuo, Y
    Kato, H
    Onodera, H
    MECHANISMS OF SECONDARY BRAIN DAMAGE IN CEREBRAL ISCHEMIA AND TRAUMA, 1996, 66 : 40 - 43
  • [6] INDOMETHACIN PREVENTS IMPAIRED PERFUSION OF DOGS BRAIN AFTER GLOBAL ISCHEMIA
    FURLOW, TW
    HALLENBECK, JM
    STROKE, 1978, 9 (06) : 591 - 594
  • [7] Chronic cerebrovascular ischemia in aged rats: effects on brain metabolic capacity and behavior
    Cada, A
    de la Torre, JC
    Gonzalez-Lima, F
    NEUROBIOLOGY OF AGING, 2000, 21 (02) : 225 - 233
  • [8] Phagocytic astrocytes after brain ischemia
    Morizawa, Yosuke
    Hirayama, Yuri
    Koizumi, Shuichi
    JOURNAL OF PHARMACOLOGICAL SCIENCES, 2015, 128 (03) : S220 - S220
  • [9] Phagocytic astrocytes after brain ischemia
    Morizawa, Y.
    Hirayama, Y.
    Shibata, S.
    Koizumi, S.
    GLIA, 2015, 63 : E256 - E257
  • [10] Amyloid pathology in the brain after ischemia
    Pluta, Ryszard
    Ulamek-Koziol, Marzena
    Januszewski, Slawomir
    Czuczwar, Stanistaw J.
    FOLIA NEUROPATHOLOGICA, 2019, 57 (03) : 220 - 226