On inequalities for moments and the covariance of monotone functions

被引:13
|
作者
Schmidt, Klaus D. [1 ]
机构
[1] Tech Univ Dresden, Lehrstuhl Versicherungsmath, D-01062 Dresden, Germany
来源
关键词
Correlation; Comonotonicity; Risk measures; Esscher premium; Collective model; Reinsurance; COMONOTONICITY;
D O I
10.1016/j.insmatheco.2013.12.006
中图分类号
F [经济];
学科分类号
02 ;
摘要
Intuition based on the usual interpretation of the covariance of two random variables suggests that the inequality cov[f (X), g (X)] >= 0 should hold for any random variable X and any two increasing functions f and g. The inequality holds indeed, but a proof is hard to find in the literature. In this paper we provide an elementary proof of a more general inequality for moments and we present several applications in actuarial mathematics. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:91 / 95
页数:5
相关论文
共 50 条
  • [1] MOMENTS OF CONVEX AND MONOTONE FUNCTIONS
    NISHIURA, T
    SCHNITZE.F
    MONATSHEFTE FUR MATHEMATIK, 1972, 76 (02): : 135 - &
  • [2] Some inequalities on monotone functions
    Meidell, Birger
    SKANDINAVISK AKTUARIETIDSKRIFT, 1921, 4 : 230 - 238
  • [3] Integral inequalities for monotone functions
    Pecaric, J
    Peric, I
    Persson, LE
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 215 (01) : 235 - 251
  • [4] Refinement of integral inequalities for monotone functions
    Saad Ihsan Butt
    Josip Pečarić
    Ivan Perić
    Journal of Inequalities and Applications, 2012
  • [5] SOME INEQUALITIES OF OPERATOR MONOTONE FUNCTIONS
    Zuo, Hongliang
    Duan, Guangcai
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2014, 8 (04): : 777 - 781
  • [6] New inequalities for operator monotone functions
    Dragomir, Silvestru Sever
    ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2021, 48 (01): : 137 - 145
  • [7] ON SOME INEQUALITIES FOR MONOTONE-FUNCTIONS
    MITRINOVIC, DS
    PECARIC, JE
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1991, 5B (02): : 407 - 416
  • [8] WEIGHTED INEQUALITIES FOR MONOTONE AND CONCAVE FUNCTIONS
    HEINIG, H
    MALIGRANDA, L
    STUDIA MATHEMATICA, 1995, 116 (02) : 133 - 165
  • [9] Refinement of integral inequalities for monotone functions
    Butt, Saad Ihsan
    Pecaric, Josip
    Peric, Ivan
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2012,
  • [10] WEIGHTED INEQUALITIES FOR MONOTONE-FUNCTIONS
    DELAMO, AG
    MATHEMATISCHE NACHRICHTEN, 1995, 172 : 113 - 126