A Machine-Learning Approach for Detection and Quantification of QRS Fragmentation

被引:27
|
作者
Goovaerts, Griet [1 ,2 ]
Padhy, Sibasankar [1 ,2 ]
Vandenberk, Bert [3 ]
Varon, Carolina [1 ,2 ]
Willems, Rik [3 ]
Van Huffel, Sabine [1 ,2 ]
机构
[1] Katholieke Univ Leuven, STADIUS, Dept Elect Engn, B-3001 Leuven, Belgium
[2] IMEC, B-3001 Leuven, Belgium
[3] Katholieke Univ Leuven, Dept Cardiovasc Dis, Expt Cardiol, B-3001 Leuven, Belgium
基金
欧洲研究理事会;
关键词
ECG signal processing; phase rectified signal averaging; QRS fragmentation; variational mode decomposition; machine learning; support vector machine; ECG; SEGMENTATION; PREDICTOR;
D O I
10.1109/JBHI.2018.2878492
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Objective: Fragmented QRS (fQRS) is an accessible biomarker and indication of myocardial scarring that can be detected from the electrocardiogram (ECG). Nowadays, fQRS scoring is done on a visual basis, which is time consuming and leads to subjective results. This study proposes an automated method to detect and quantify fQRS in a continuous way using features extracted from variational mode decomposition (VMD) and phase-rectified signal averaging (PRSA). Methods: In the proposed framework, QRS complexes in the ECG signals were first segmented using VMD. Then, ten VMD- and PRSA-based features were computed and fed into well-known classifiers such as support vector machine (SVM), K-nearest neighbors (KNN), Naive Bayesian (NB), and TreeBagger (TB) in order to compare their performance. The proposed method was evaluated with 12-lead ECG data of 616 patients from the University Hospitals Leuven. The presence of fQRS in each ECG lead was scored by five raters. Both detection and quantification of fQRS could be achieved in this way. Results: The experimental results indicated that the proposed method achieved AUC values of 0.95, 0.94, 0.90, and 0.89 using SVM, KNN, NB, and TB classifiers, respectively, for detecting QRS fragmentation. Assessment of quantification performance was done by comparing the fQRS score with the total score, obtained by summing the scores from the individual raters. Results showed that the fQRS score clearly correlated with this estimate of fQRS certainty. Conclusion: The proposed method obtained good results in both fQRS detection and quantification, and is a novel way of assessing the certainty of QRS fragmentation in the ECG signal.
引用
收藏
页码:1980 / 1989
页数:10
相关论文
共 50 条
  • [1] Interruption Detection for Detection and Quantification of QRS Fragmentation Based on Machine Learning and Deep Learning Technique
    Banu, Afsana
    Manjunath, K. G.
    PROCEEDINGS OF SECOND INTERNATIONAL CONFERENCE ON SUSTAINABLE EXPERT SYSTEMS (ICSES 2021), 2022, 351 : 669 - 677
  • [2] A Machine-learning based Unbiased Phishing Detection Approach
    Shirazi, Hossein
    Zweigle, Landon
    Ray, Indrakshi
    PROCEEDINGS OF THE 17TH INTERNATIONAL JOINT CONFERENCE ON E-BUSINESS AND TELECOMMUNICATIONS (SECRYPT), VOL 1, 2020, : 423 - 430
  • [3] A machine-learning approach to negation and speculation detection for sentiment analysis
    Cruz, Noa P.
    Taboada, Maite
    Mitkov, Ruslan
    JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY, 2016, 67 (09) : 2118 - 2136
  • [4] Image-based crystal detection: a machine-learning approach
    Liu, Roy
    Freund, Yoav
    Spraggon, Glen
    ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2008, 64 : 1187 - 1195
  • [5] A Machine-Learning Approach to Negation and Speculation Detection in Clinical Texts
    Cruz Diaz, Noa P.
    Mana Lopez, Manuel J.
    Mata Vazquez, Jacinto
    Pachon Alvarez, Victoria
    JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY, 2012, 63 (07): : 1398 - 1410
  • [6] A machine-learning approach to automatic detection of delimiters in tabular data files
    Saurav, Shitesh
    Schwarz, Peter
    PROCEEDINGS OF 2016 IEEE 18TH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING AND COMMUNICATIONS; IEEE 14TH INTERNATIONAL CONFERENCE ON SMART CITY; IEEE 2ND INTERNATIONAL CONFERENCE ON DATA SCIENCE AND SYSTEMS (HPCC/SMARTCITY/DSS), 2016, : 1501 - 1503
  • [7] A Machine-Learning Based Microwave Sensing Approach to Food Contaminant Detection
    Urbinati, Luca
    Ricci, Marco
    Turvani, Giovanna
    Vasquez, Jorge A. Tobon
    Vipiana, Francesca
    Casu, Mario R.
    2020 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2020,
  • [8] Detection of Colchicum autumnale in drone images, using a machine-learning approach
    Lukas Petrich
    Georg Lohrmann
    Matthias Neumann
    Fabio Martin
    Andreas Frey
    Albert Stoll
    Volker Schmidt
    Precision Agriculture, 2020, 21 : 1291 - 1303
  • [9] A Machine-Learning Approach to the Detection of Fetal Hypoxia during Labor and Delivery
    Warrick, Philip A.
    Hamilton, Emily F.
    Kearney, Robert E.
    Precup, Doina
    AI MAGAZINE, 2012, 33 (02) : 79 - 90
  • [10] Detection of Colchicum autumnale in drone images, using a machine-learning approach
    Petrich, Lukas
    Lohrmann, Georg
    Neumann, Matthias
    Martin, Fabio
    Frey, Andreas
    Stoll, Albert
    Schmidt, Volker
    PRECISION AGRICULTURE, 2020, 21 (06) : 1291 - 1303