Intrusion detection using Highest Wins feature selection algorithm

被引:13
|
作者
Mohammad, Rami Mustafa A. [1 ]
Alsmadi, Mutasem K. [2 ]
机构
[1] Imam Abdulrahman Bin Faisal Univ, Coll Comp Sci & Informat Technol, Dept Comp Informat Syst, POB 1982, Dammam, Saudi Arabia
[2] Imam Abdulrahman Bin Faisal Univ, Coll Appl Studies & Community Serv, Dept MIS, POB 1982, Dammam, Saudi Arabia
来源
NEURAL COMPUTING & APPLICATIONS | 2021年 / 33卷 / 16期
关键词
Intrusion detection; Naï ve Bayes; Data mining; Feature selection;
D O I
10.1007/s00521-021-05745-w
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The rapid advancement of Internet stimulates building intelligent data mining systems for detecting intrusion attacks. The performance of such systems might be negatively affected due to the big datasets employed in the learning phase. Determining the appropriate group of features within training datasets is an essential phase when building data mining classification models. Nevertheless, the resulted minimized set of features should maintain or even improve the performance of the classification models. Throughout this article, an innovative feature selection algorithm is proposed and is called "the Highest Wins" (HW). To evaluate the generalization ability of HW, it has been applied for creating classification models using naive Bayes technique from 10 benchmark datasets. The obtained results were compared against two well-known strategies, namely chi-square and information gain. The experimental results confirmed the competitiveness ability of the suggested strategy in terms of various evaluation measurements such as recall, precision, and error rate while significantly decreasing the number of selected features in datasets. Further, the HW is used for building a naive Bayes and decision tree intrusion detection classifiers using the well-known dataset from Network Security Laboratory-Knowledge Discovery in Databases (NSL-KDD). The results were promising not just in terms of overall performance, but also in terms of the time needed to build the classification model.
引用
收藏
页码:9805 / 9816
页数:12
相关论文
共 50 条
  • [1] Intrusion detection using Highest Wins feature selection algorithm
    Rami Mustafa A. Mohammad
    Mutasem K. Alsmadi
    Neural Computing and Applications, 2021, 33 : 9805 - 9816
  • [2] Feature selection using a genetic algorithm for intrusion detection
    Helmer, G
    Wong, J
    Honavar, V
    Miller, L
    GECCO-99: PROCEEDINGS OF THE GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 1999, : 1781 - 1781
  • [3] Feature Subset Selection Using Genetic Algorithm for Intrusion Detection System
    Behjat, Amir Rajabi
    Vatankhah, Najmeh
    Mustapha, Aida
    ADVANCED SCIENCE LETTERS, 2014, 20 (01) : 235 - 238
  • [4] A feature selection algorithm towards efficient intrusion detection
    Yin, Chunyong
    Ma, Luyu
    Feng, Lu
    Yin, Zhichao
    Wang, Jin
    International Journal of Multimedia and Ubiquitous Engineering, 2015, 10 (11): : 253 - 264
  • [5] Cyber intrusion detection by combined feature selection algorithm
    Mohammadi, Sara
    Mirvaziri, Hamid
    Ghazizadeh-Ahsaee, Mostafa
    Karimipour, Hadis
    JOURNAL OF INFORMATION SECURITY AND APPLICATIONS, 2019, 44 : 80 - 88
  • [6] A Novel Algorithm for Feature Selection Used in Intrusion Detection
    Hao, Yongle
    Hou, Ying
    Li, Longjie
    INNOVATIVE MOBILE AND INTERNET SERVICES IN UBIQUITOUS COMPUTING, IMIS-2017, 2018, 612 : 967 - 974
  • [7] Optimal Feature Selection Based on Evolutionary Algorithm for Intrusion Detection
    Prashanth S.K.
    Shitharth S.
    Praveen Kumar B.
    Subedha V.
    Sangeetha K.
    SN Computer Science, 3 (6)
  • [8] Firefly algorithm based feature selection for network intrusion detection
    Selvakumar, B.
    Muneeswaran, K.
    COMPUTERS & SECURITY, 2019, 81 : 148 - 155
  • [9] Genetic algorithm with Different Feature Selection Method for Intrusion Detection
    Cleetus, Nimmy
    Dhanya, K. A.
    2014 FIRST INTERNATIONAL CONFERENCE ON COMPUTATIONAL SYSTEMS AND COMMUNICATIONS (ICCSC), 2014, : 220 - 225
  • [10] An Advanced Fitness Function Optimization Algorithm for Anomaly Intrusion Detection Using Feature Selection
    Hong, Sung-Sam
    Lee, Eun-joo
    Kim, Hwayoung
    APPLIED SCIENCES-BASEL, 2023, 13 (08):