Entropy generation and dissipative heat transfer analysis of mixed convective hydromagnetic flow of a Casson nanofluid with thermal radiation and Hall current

被引:52
|
作者
Sahoo, A. [1 ]
Nandkeolyar, R. [1 ]
机构
[1] Natl Inst Technol Jamshedpur, Dept Math, Jamshedpur 831014, Bihar, India
关键词
PERMEABLE STRETCHING SHEET; STAGNATION POINT FLOW; BOUNDARY-LAYER-FLOW; VISCOUS DISSIPATION; MASS-TRANSFER; FLUID-FLOW; MHD FLOW; SURFACE; NANOPARTICLES; MODEL;
D O I
10.1038/s41598-021-83124-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The present article provides a detailed analysis of entropy generation on the unsteady three-dimensional incompressible and electrically conducting magnetohydrodynamic flow of a Casson nanofluid under the influence of mixed convection, radiation, viscous dissipation, Brownian motion, Ohmic heating, thermophoresis and heat generation. At first, similarity transformation is used to transform the governing nonlinear coupled partial differential equations into nonlinear coupled ordinary differential equations, and then the resulting highly nonlinear coupled ordinary differential equations are numerically solved by the utilization of spectral quasi-linearization method. Moreover, the effects of pertinent flow parameters on velocity distribution, temperature distribution, concentration distribution, entropy generation and Bejan number are depicted prominently through various graphs and tables. It can be analyzed from the graphs that the Casson parameter acts as an assisting parameter towards the temperature distribution in the absence of viscous and Joule dissipations, while it has an adverse effect on temperature under the impacts of viscous and Joule dissipations. On the contrary, entropy generation increases significantly for larger Brinkman number, diffusive variable and concentration ratio parameter, whereas the reverse effects of these parameters on Bejan number are examined. Apart from this, the numerical values of some physical quantities such as skin friction coefficients in x and z directions, local Nusselt number and Sherwood number for the variation of the values of pertinent parameters are displayed in tabular forms. A quadratic multiple regression analysis for these physical quantities has also been carried out to improve the present model's effectiveness in various industrial and engineering areas. Furthermore, an appropriate agreement is obtained on comparing the present results with previously published results.
引用
收藏
页数:31
相关论文
共 50 条
  • [1] Entropy generation and dissipative heat transfer analysis of mixed convective hydromagnetic flow of a Casson nanofluid with thermal radiation and Hall current
    A. Sahoo
    R. Nandkeolyar
    Scientific Reports, 11
  • [2] Thermal radiation and Hall effects in mixed convective peristaltic transport of nanofluid with entropy generation
    Y. Akbar
    F. M. Abbasi
    S. A. Shehzad
    Applied Nanoscience, 2020, 10 : 5421 - 5433
  • [3] Thermal radiation and Hall effects in mixed convective peristaltic transport of nanofluid with entropy generation
    Akbar, Y.
    Abbasi, F. M.
    Shehzad, S. A.
    APPLIED NANOSCIENCE, 2020, 10 (12) : 5421 - 5433
  • [4] Entropy generation on double diffusive MHD Casson nanofluid flow with convective heat transfer and activation energy
    A. Kumar
    R. Tripathi
    R. Singh
    Mikhail A. Sheremet
    Indian Journal of Physics, 2021, 95 : 1423 - 1436
  • [5] Entropy generation on double diffusive MHD Casson nanofluid flow with convective heat transfer and activation energy
    Kumar, A.
    Tripathi, R.
    Singh, R.
    Sheremet, M. A.
    INDIAN JOURNAL OF PHYSICS, 2021, 95 (07) : 1423 - 1436
  • [6] Numerical analysis of magnetohydrodynamics Casson nanofluid flow with activation energy, Hall current and thermal radiation
    Y. Suresh Kumar
    Shaik Hussain
    K. Raghunath
    Farhan Ali
    Kamel Guedri
    Sayed M. Eldin
    M. Ijaz Khan
    Scientific Reports, 13
  • [7] Numerical analysis of magnetohydrodynamics Casson nanofluid flow with activation energy, Hall current and thermal radiation
    Suresh Kumar, Y.
    Hussain, Shaik
    Raghunath, K.
    Ali, Farhan
    Guedri, Kamel
    Eldin, Sayed M.
    Khan, M. Ijaz
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [8] Entropy Generation and Regression Analysis of Magnetohydrodynamic Stagnation Point Flow of a Casson Fluid with Radiative and Dissipative Heat Transfer and Hall Effects
    Prashu
    Nandkeolyar R.
    Kumar P.
    Sinha V.K.
    Sangwan V.
    Mathematical Problems in Engineering, 2023, 2023
  • [9] Analysis of Entropy Generation in Mixed Convective Peristaltic Flow of Nanofluid
    Hayat, Tasawar
    Nawaz, Sadaf
    Alsaedi, Ahmed
    Rafiq, Maimona
    ENTROPY, 2016, 18 (10)
  • [10] Thermal and concentration slip impact on the dissipative Casson–Maxwell nanofluid flow due to a stretching sheet with heat generation and thermal radiation
    Haifaa Alrihieli
    The European Physical Journal Plus, 138