A mass production paper-making method to prepare superior flexible electrodes and asymmetric supercapacitors with high volumetric capacitance

被引:17
|
作者
Bi, Jingxuan [1 ]
Wu, Haiwei [1 ,2 ]
Wang, Li [1 ]
Pang, Xiaofei [1 ]
Li, Yiyi [1 ]
Meng, Qingjun [1 ,2 ]
Wang, Lei [3 ]
机构
[1] Shaanxi Univ Sci & Technol, Coll Bioresources Chem & Mat Engn, Shaanxi Prov Key Lab Papermaking Technol & Specia, Xian 710021, Peoples R China
[2] Shaanxi Univ Sci & Technol, Natl Demonstrat Ctr Expt Light Chem Engn Educ, Xian 710021, Peoples R China
[3] Shaanxi Univ Sci & Technol, Sch Mat Sci & Engn, Xian 710021, Peoples R China
关键词
Hardwood fiber; NiCo2S4; Supercapacitor; Flexible; Cellulose nanofiber; SOLID-STATE SUPERCAPACITORS; ENERGY-STORAGE; RECENT PROGRESS; CARBON CLOTH; NICO2S4; NANOCELLULOSE; NANOTUBES; CELLULOSE; ARRAYS;
D O I
10.1016/j.electacta.2020.137409
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
In this study, paper supported flexible electrodes for supercapacitors are prepared by paper-making process with the hardwood fiber (HWF), multi-walled carbon nanotube (MWCNT) and NiCo2S4 powder. Compared with previous reported cellulose nanofiber (CNF), nickel foam and carbon cloth supported electrodes, the HWF supported paper electrodes demonstrate its advantages of low-cost, mass production, low-thickness and superior flexibility. It can achieve a high specific capacitance of 1725 F g(-1) at 1 A g(-1), a remarkable rate retention of 79.3 % from 1 A g(-1) to 10 A g(-1), an ultrahigh volumetric specific capacitance of 246.4 F cm(-3) at 1 mA cm(-2) and an excellent cycling stability at 20 A g(-1) after 5000 cycles. The as-fabricated HWF supported flexible asymmetric supercapacitors (ASCs) have achieved excellent volumetric specific capacitance of 10.25 F cm(-3) and energy density of 10.1 mWh cm(-3) with power density of 93.9 mW cm(-3). All results suggest that the paper-making method and the HWF supported paper electrodes provide great opportunity for developing high-performance flexible energy-storage electrodes with the feasibility of mass production. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:9
相关论文
共 7 条
  • [1] Carbon nanofiber/graphene composite paper for flexible supercapacitors with high volumetric capacitance
    Ma, Chang
    Wang, Xiu
    Ma, Yuan
    Sheng, Jie
    Li, Yajuan
    Li, Sizhong
    Shi, Jingli
    MATERIALS LETTERS, 2015, 145 : 197 - 200
  • [2] Conductive PEDOT:PSS/cellulose nanofibril paper electrodes for flexible supercapacitors with superior areal capacitance and cycling stability
    Du, Haishun
    Zhang, Miaomiao
    Liu, Kun
    Parit, Mahesh
    Jiang, Zhihua
    Zhang, Xinyu
    Li, Bin
    Si, Chuanling
    CHEMICAL ENGINEERING JOURNAL, 2022, 428
  • [3] Alternately Dipping Method to Prepare Graphene Fiber Electrodes for Ultra-high-Capacitance Fiber Supercapacitors
    Qu, Guoxing
    Zhou, Yu
    Zhang, Jiahao
    Xiong, Lei
    Yue, Qin
    Kang, Yijin
    ISCIENCE, 2020, 23 (08)
  • [4] Nanocellulose coupled flexible polypyrrole@graphene oxide composite paper electrodes with high volumetric capacitance
    Wang, Zhaohui
    Tammela, Petter
    Stromme, Maria
    Nyholm, Leif
    NANOSCALE, 2015, 7 (08) : 3418 - 3423
  • [5] Sandwich-like high-load MXene/polyaniline film electrodes with ultrahigh volumetric capacitance for flexible supercapacitors
    Li, Chenglong
    Wang, Shuang
    Cui, Yinghe
    Wang, Xiaodong
    Yong, Zhipeng
    Liang, Dan
    Chi, Yue
    Wang, Zhe
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2022, 620 : 35 - 46
  • [6] Solution-processed poly(3,4-ethylenedioxythiophene) nanocomposite paper electrodes for high-capacitance flexible supercapacitors
    Wang, Zhaohui
    Tammela, Petter
    Huo, Jinxing
    Zhang, Peng
    Stromme, Maria
    Nyholm, Leif
    JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (05) : 1714 - 1722
  • [7] Facile strategy for mass production of polymer-supported film electrodes for high performance flexible symmetric solid-state supercapacitors
    Wang, Qi
    Du, Pengcheng
    Liu, Juanli
    Liu, Dong
    Niu, Jingye
    Liu, Peng
    APPLIED SURFACE SCIENCE, 2019, 487 : 295 - 303