Evaluable multipartite entanglement measures: Multipartite concurrences as entanglement monotones

被引:17
|
作者
Demkowicz-Dobrzanski, Rafal
Buchleitner, Andreas
Kus, Marek
Mintert, Florian
机构
[1] Polish Acad Sci, Ctr Theoret Phys, PL-02668 Warsaw, Poland
[2] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
[3] Cardinal Stefan Wyszynski Univ, Fac Math & Sci, Warsaw, Poland
[4] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
来源
PHYSICAL REVIEW A | 2006年 / 74卷 / 05期
关键词
D O I
10.1103/PhysRevA.74.052303
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We discuss the monotonicity of systematically constructed quantities aiming at the quantification of the entanglement properties of multipartite quantum systems, under local operations and classical communication. We provide a necessary and sufficient condition for the monotonicity of generalized multipartite concurrences which qualifies them as legitimate entanglement measures.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Multipartite-entanglement monotones and polynomial invariants
    Eltschka, Christopher
    Bastin, Thierry
    Osterloh, Andreas
    Siewert, Jens
    PHYSICAL REVIEW A, 2012, 85 (02):
  • [2] Multipartite entanglement measures
    Szalay, Szilard
    PHYSICAL REVIEW A, 2015, 92 (04)
  • [3] Permutation-invariant monotones for multipartite entanglement characterization
    Ren, Xi-Jun
    Jiang, Wei
    Zhou, Xingxiang
    Zhou, Zheng-Wei
    Guo, Guang-Can
    PHYSICAL REVIEW A, 2008, 78 (01):
  • [4] Operational Multipartite Entanglement Measures
    Schwaiger, K.
    Sauerwein, D.
    Cuquet, M.
    de Vicente, J. I.
    Kraus, B.
    PHYSICAL REVIEW LETTERS, 2015, 115 (15)
  • [5] Geometric multipartite entanglement measures
    Paz-Silva, Gerardo A.
    Reina, John H.
    PHYSICS LETTERS A, 2007, 365 (1-2) : 64 - 69
  • [6] Estimating multipartite entanglement measures
    Osterloh, Andreas
    Hyllus, Philipp
    PHYSICAL REVIEW A, 2010, 81 (02):
  • [7] A Family of Multipartite Entanglement Measures
    Vrana, Peter
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 402 (01) : 637 - 664
  • [8] A Family of Multipartite Entanglement Measures
    Péter Vrana
    Communications in Mathematical Physics, 2023, 402 : 637 - 664
  • [9] Parametrized multipartite entanglement measures
    Li, Hui
    Gao, Ting
    Yan, Fengli
    PHYSICAL REVIEW A, 2024, 109 (01)
  • [10] Geometric mean of bipartite concurrences as a genuine multipartite entanglement measure
    Li, Yinfei
    Shang, Jiangwei
    PHYSICAL REVIEW RESEARCH, 2022, 4 (02):