Straddles on ternary semigroups

被引:1
|
作者
Ratanaburee, Phoschanun [1 ]
Kaewnoi, Thananya [1 ]
Chinram, Ronnason [1 ,2 ]
机构
[1] Prince Songkla Univ, Fac Sci, Dept Math & Stat, Hat Yai 90110, Songkhla, Thailand
[2] CHE, Ctr Excellence Math, Si Ayuthaya Rd, Bangkok 10400, Thailand
来源
关键词
Straddles; ternary semigroups; commutative elements; homomorphisms; IDEAL EXTENSIONS;
D O I
10.22436/jmcs.019.04.04
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A ternary semigroup is a nonempty set with a ternary operation satisfy the associative law. In this paper, we define straddles on ternary semigroups and investigate some properties of straddles of ternary semigroups.
引用
收藏
页码:246 / 250
页数:5
相关论文
共 50 条
  • [1] STRADDLES AND SPLITS ON SEMIGROUPS
    BUTLER, KK
    ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1973, 24 (1-2): : 113 - 114
  • [2] STRADDLES AND SPLITS ON SEMIGROUPS
    BUTLER, KKH
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (04): : 628 - &
  • [3] Ternary semigroups
    Santiago, M. L.
    Bala, S. Sri
    SEMIGROUP FORUM, 2010, 81 (02) : 380 - 388
  • [4] Ternary semigroups
    M. L. Santiago
    S. Sri Bala
    Semigroup Forum, 2010, 81 : 380 - 388
  • [5] Ternary γ-homomorphisms and ternary γ-derivations on ternary semigroups
    Dehghanian, Mehdi
    Modarres, Mohammad Sadegh
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2012,
  • [6] Ternary γ-homomorphisms and ternary γ-derivations on ternary semigroups
    Mehdi Dehghanian
    Mohammad Sadegh Modarres
    Journal of Inequalities and Applications, 2012
  • [7] On Ordered Ternary Semigroups
    Daddi, Vanita Rohit
    Pawar, Yashashree Shivajirao
    KYUNGPOOK MATHEMATICAL JOURNAL, 2012, 52 (04): : 375 - 381
  • [8] Congruences on ternary semigroups
    A. Chronowski
    Ukrainian Mathematical Journal, 2004, 56 (4) : 662 - 681
  • [9] Congruences on ternary semigroups
    Chronowski A.
    Ukrainian Mathematical Journal, 2004, 56 (4) : 662 - 681
  • [10] *-Relations on ternary semigroups
    Ashrafi, Nahid
    Yazdanmehr, Zahra
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2018, 15 (06)