Multiple kernel low-rank representation-based robust multi-view subspace clustering

被引:38
|
作者
Zhang, Xiaoqian [1 ,2 ]
Ren, Zhenwen [1 ,3 ]
Sun, Huaijiang [1 ]
Bai, Keqiang [2 ]
Feng, Xinghua [2 ]
Liu, Zhigui [2 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Peoples R China
[2] Southwest Univ Sci & Technol, Sch Informat Engn, Mianyang 621010, Sichuan, Peoples R China
[3] Southwest Univ Sci & Technol, Sch Natl Def Sci & Technol, Mianyang 621010, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Multiple kernel; Subspace clustering; Multi-view data; Low-rank representation; Weighted Schatten p-norm; SCHATTEN P-NORM; SPARSE; CORRENTROPY; MINIMIZATION; REGULARIZER; SIGNAL;
D O I
10.1016/j.ins.2020.10.059
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Owing to the presence of complex noise, it is extremely challenging to learn a low-dimensional subspace structure directly from the original data. In addition, the nonlinear structure of the data makes multi-view subspace clustering more difficult. In this paper, we propose a multiple kernel low-rank representation-based robust multi-view subspace clustering method (MKLR-RMSC) that combines a learnable low-rank multiple kernel trick with co-regularization. MKLR-RMSC mainly condus the following four tasks: 1) fully mining the complementary information provided by the different views in the feature spaces, 2) the containment of multiple low-dimensional subspaces in the feature space data, 3) allowing all view-specific representations towards a common centroid, and 4) effectively dealing with non-Gaussian noise in data. In our model, the weighted Schatten p-norm is applied to fully explore the effects of different ranks while approaching the original low-rank hypothesis. Moreover, different predefined learning kernel matrices are designed for different views, which is more conducive to mining the unique and complementary information of different views. In addition, as a robust measure, correntropy is applied in MKLR-RMSC. Our method is more effective and robust than several of the most advanced methods on six commonly used datasets. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:324 / 340
页数:17
相关论文
共 50 条
  • [1] Mixed structure low-rank representation for multi-view subspace clustering
    Shouhang Wang
    Yong Wang
    Guifu Lu
    Wenge Le
    [J]. Applied Intelligence, 2023, 53 : 18470 - 18487
  • [2] Weighted Low-Rank Tensor Representation for Multi-View Subspace Clustering
    Wang, Shuqin
    Chen, Yongyong
    Zheng, Fangying
    [J]. FRONTIERS IN PHYSICS, 2021, 8
  • [3] Mixed structure low-rank representation for multi-view subspace clustering
    Wang, Shouhang
    Wang, Yong
    Lu, Guifu
    Le, Wenge
    [J]. APPLIED INTELLIGENCE, 2023, 53 (15) : 18470 - 18487
  • [4] LOW-RANK AND SPARSE TENSOR REPRESENTATION FOR MULTI-VIEW SUBSPACE CLUSTERING
    Wang, Shuqin
    Chen, Yongyong
    Cen, Yigang
    Zhang, Linna
    Voronin, Viacheslav
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 1534 - 1538
  • [5] Robust low-rank kernel multi-view subspace clustering based on the Schatten p-norm and correntropy
    Zhang, Xiaoqian
    Sun, Huaijiang
    Liu, Zhigui
    Ren, Zhenwen
    Cui, Qiongjie
    Li, Yanmeng
    [J]. INFORMATION SCIENCES, 2019, 477 : 430 - 447
  • [6] Facilitated low-rank multi-view subspace clustering
    Zhang, Guang-Yu
    Huang, Dong
    Wang, Chang-Dong
    [J]. KNOWLEDGE-BASED SYSTEMS, 2023, 260
  • [7] Deep Low-Rank Multi-View Subspace Clustering
    Yan, Jintao
    Li, Zhongyu
    Tang, Qifan
    Zhou, Zhihao
    [J]. Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2021, 55 (11): : 125 - 135
  • [8] Multi-view low-rank sparse subspace clustering
    Brbic, Maria
    Kopriva, Ivica
    [J]. PATTERN RECOGNITION, 2018, 73 : 247 - 258
  • [9] Nonconvex low-rank and sparse tensor representation for multi-view subspace clustering
    Shuqin Wang
    Yongyong Chen
    Yigang Cen
    Linna Zhang
    Hengyou Wang
    Viacheslav Voronin
    [J]. Applied Intelligence, 2022, 52 : 14651 - 14664
  • [10] Nonconvex low-rank and sparse tensor representation for multi-view subspace clustering
    Wang, Shuqin
    Chen, Yongyong
    Cen, Yigang
    Zhang, Linna
    Wang, Hengyou
    Voronin, Viacheslav
    [J]. APPLIED INTELLIGENCE, 2022, 52 (13) : 14651 - 14664