The characteristic classes of Morita equivalent star products on symplectic manifolds

被引:31
|
作者
Bursztyn, H [1 ]
Waldmann, S
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[2] Univ Freiburg, Fak Phys, D-79104 Freiburg, Germany
关键词
D O I
10.1007/s002200200657
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we give a complete characterization of Morita equivalent star products on symplectic manifolds in terms of their characteristic classes: two star products star and star' on (M,omega) are Morita equivalent if and only if there exists a symplectomorphism psi : M --> M such that the relative class t(star, psi*(star')) is 2pi i-integral. For star products on cotangent bundles, we show that this integrality condition is related to Dirac's quantization condition for magnetic charges.
引用
收藏
页码:103 / 121
页数:19
相关论文
共 50 条
  • [1] The Characteristic Classes of Morita Equivalent Star Products on Symplectic Manifolds
    Henrique Bursztyn
    Stefan Waldmann
    Communications in Mathematical Physics, 2002, 228 : 103 - 121
  • [2] Characteristic classes of star products on Marsden–Weinstein reduced symplectic manifolds
    Thorsten Reichert
    Letters in Mathematical Physics, 2017, 107 : 643 - 658
  • [3] Morita equivalence and characteristic classes of star products
    Bursztyn, H.
    Dolgushev, V.
    Waldmann, S.
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2012, 662 : 95 - 163
  • [4] Characteristic classes of star products on Marsden-Weinstein reduced symplectic manifolds
    Reichert, Thorsten
    LETTERS IN MATHEMATICAL PHYSICS, 2017, 107 (04) : 643 - 658
  • [5] Classification of Invariant Star Products up to Equivariant Morita Equivalence on Symplectic Manifolds
    Stefan Jansen
    Nikolai Neumaier
    Gregor Schaumann
    Stefan Waldmann
    Letters in Mathematical Physics, 2012, 100 : 203 - 236
  • [6] Classification of Invariant Star Products up to Equivariant Morita Equivalence on Symplectic Manifolds
    Jansen, Stefan
    Neumaier, Nikolai
    Schaumann, Gregor
    Waldmann, Stefan
    LETTERS IN MATHEMATICAL PHYSICS, 2012, 100 (02) : 203 - 236
  • [7] Traces for star products on symplectic manifolds
    Gutt, S
    Rawnsley, J
    JOURNAL OF GEOMETRY AND PHYSICS, 2002, 42 (1-2) : 12 - 18
  • [8] Nonorientable manifolds, complex and symplectic structures, and characteristic classes
    Biswas, Indranil
    Datta, Mahuya
    BULLETIN DES SCIENCES MATHEMATIQUES, 2017, 141 (05): : 489 - 508
  • [9] Equivalence of star-products on symplectic manifolds
    Batubenge, A
    Mabizela, S
    Beko, FT
    TOPOLOGY PROCEEDINGS, VOL 27, NO 1, 2003, 2003, : 15 - 25
  • [10] Classification of Equivariant Star Products on Symplectic Manifolds
    Reichert, Thorsten
    Waldmann, Stefan
    LETTERS IN MATHEMATICAL PHYSICS, 2016, 106 (05) : 675 - 692