EIGENVALUE HOMOGENISATION PROBLEM WITH INDEFINITE WEIGHTS

被引:3
|
作者
Fernandez Bonder, Julian [1 ]
Pinasco, Juan P. [1 ]
Salort, Ariel M. [1 ]
机构
[1] Univ Buenos Aires, FCEyN, CONICET, Dept Matemat,IMAS, RA-1428 Buenos Aires, DF, Argentina
关键词
p-Laplace-type problems; eigenvalues; homogenisation; indefinite weights; QUASI-LINEAR EIGENVALUES; MONOTONE-OPERATORS; CONVERGENCE;
D O I
10.1017/S0004972715001094
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work we study the homogenisation problem for nonlinear elliptic equations involving p-Laplacian-type operators with sign-changing weights. We study the asymptotic behaviour of variational eigenvalues which consist of a double sequence of eigenvalues. We show that the kth positive eigenvalue goes to infinity when the average of the weights is nonpositive, and converges to the kth variational eigenvalue of the limit problem when the average is positive for any k >= 1.
引用
收藏
页码:113 / 127
页数:15
相关论文
共 50 条