Operator product expansion and zero mode structure in logarithmic CFT

被引:4
|
作者
Flohr, M
Krohn, M
机构
[1] Univ Bonn, Inst Phys, D-53115 Bonn, Germany
[2] Univ Hannover, Inst Theoret Phys, D-30167 Hannover, Germany
来源
关键词
D O I
10.1002/prop.200310137
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The generic structure of 1-, 2- and 3-point functions of fields residing in indecomposable representations of arbitrary rank are given. These in turn determine the structure of the operator product expansion in logarithmic conformal field theory. The crucial role of zero modes is discussed in some detail. (C) 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
引用
下载
收藏
页码:503 / 508
页数:6
相关论文
共 50 条
  • [1] dS/CFT and the operator product expansion
    Chatterjee, Atreya
    Lowe, David A.
    PHYSICAL REVIEW D, 2017, 96 (06)
  • [2] An operator product expansion for the mutual information in AdS/CFT
    Molina-Vilaplana, Javier
    NUCLEAR PHYSICS B, 2014, 888 : 1 - 16
  • [3] Operator product expansion in logarithmic conformal field theory
    Flohr, M
    NUCLEAR PHYSICS B, 2002, 634 (03) : 511 - 545
  • [4] Aspects of the conformal Operator Product Expansion in AdS/CFT Correspondence
    Hoffmann, Laurent
    Petkou, Anastasios C.
    Ruehl, Werner
    ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2000, 4 (03)
  • [5] Reshuffling the operator product expansion: Delocalized operator expansion
    Hoang, AH
    Hofmann, R
    PHYSICAL REVIEW D, 2003, 67 (05):
  • [6] CFT and Logarithmic Corrections to the Black Hole Entropy Product Formula
    Pradhan, Parthapratim
    ADVANCES IN HIGH ENERGY PHYSICS, 2017, 2017
  • [7] FINE-STRUCTURE OF THE SUPERSYMMETRIC OPERATOR PRODUCT EXPANSION ALGEBRAS
    MUSSARDO, G
    SOTKOV, G
    STANISHKOV, M
    NUCLEAR PHYSICS B, 1988, 305 (01) : 69 - 108
  • [8] ON THE ZERO-MODE STRUCTURE OF THE RARITA-SCHWINGER OPERATOR
    BENN, IM
    PANAHI, M
    TUCKER, RW
    CLASSICAL AND QUANTUM GRAVITY, 1985, 2 (05) : L109 - L112
  • [9] Nucleon Structure Functions from Operator Product Expansion on the Lattice
    Chambers, A. J.
    Horsley, R.
    Nakamura, Y.
    Perlt, H.
    Rakow, P. E. L.
    Schierholz, G.
    Schiller, A.
    Somfleth, K.
    Young, R. D.
    Zanotti, J. M.
    PHYSICAL REVIEW LETTERS, 2017, 118 (24)
  • [10] Operator product expansion algebra
    Holland, Jan
    Hollands, Stefan
    JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (07)