Remote-sensing image super-resolution using classifier-based generative adversarial networks

被引:3
|
作者
Yue, Haosong [1 ]
Cheng, Jiaxiang [1 ]
Liu, Zhong [1 ]
Chen, Weihai [1 ]
机构
[1] Beihang Univ, Sch Automat Sci & Elect Engn, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
remote-sensing image; super-resolution; generative adversarial networks; classifier; DEEP CONVOLUTIONAL NETWORKS; RECONSTRUCTION; INTERPOLATION; RESOLUTION;
D O I
10.1117/1.JRS.14.046514
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The rapid development of the aerospace industry has significantly increased the demand for remote-sensing images with high resolution and quality. Generating images with expected resolution from the samples obtained by common acquisition devices is a challenging task as the trade-off between cost and efficiency must be considered. We propose a super-resolution (SR) algorithm especially for remote-sensing images that is based on generative adversarial networks optimized by a classifier, which is called classifier-based super-resolution generative adversarial network (CSRGAN). We hypothesize that the confidence scores of classification can be a critical factor for representing the features in target remote-sensing images. To sufficiently take this factor into account during training, we add the class-score as an error into the loss function in addition to mean square error and high-dimensional features extracted from deep neural networks. Then, the classifier is utilized for both better SR performance and more precise classification. The classifier-testing branch of our system can also be flexibly combined with other network architectures to optimize SR performance on remote-sensing images. We validate the model on the NWPU-RESISC45 dataset considering both SR and classification performance. The final analysis is also provided and shows that the proposed CSRGAN outperforms existing algorithms. (C) 2020 Society of Photo-Optical Instrumentation Engineers (SPIE)
引用
收藏
页数:17
相关论文
共 50 条
  • [1] A Super-Resolution Reconstruction Model for Remote Sensing Image Based on Generative Adversarial Networks
    Hu, Wenyi
    Ju, Lei
    Du, Yujia
    Li, Yuxia
    REMOTE SENSING, 2024, 16 (08)
  • [2] Improved Algorithm for Super-Resolution Reconstruction of Remote-Sensing Images Based on Generative Adversarial Networks
    Li Qiang
    Wang Xiyuan
    He Jiawei
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (10)
  • [3] Remote sensing image super-resolution using cascade generative adversarial nets
    Guo, Dongen
    Xia, Ying
    Xu, Liming
    Li, Weisheng
    Luo, Xiaobo
    NEUROCOMPUTING, 2021, 443 : 117 - 130
  • [4] An improved generative adversarial network for remote sensing image super-resolution
    Guo, Jifeng
    Lv, Feicai
    Shen, Jiayou
    Liu, Jing
    Wang, Mingzhi
    IET IMAGE PROCESSING, 2023, 17 (06) : 1852 - 1863
  • [5] Multiattention Generative Adversarial Network for Remote Sensing Image Super-Resolution
    Jia, Sen
    Wang, Zhihao
    Li, Qingquan
    Jia, Xiuping
    Xu, Meng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [6] Remote Sensing Image Super-Resolution Using Texture Enhancing Generative Adversarial Network
    Che, Shou-Quan
    Lu, Jian-Feng
    Journal of Computers (Taiwan), 2023, 34 (05) : 87 - 101
  • [7] Positron Image Super-Resolution Using Generative Adversarial Networks
    Xiong, Fang
    Liu, Jian
    Zhao, Min
    Yao, Min
    Guo, Ruipeng
    IEEE ACCESS, 2021, 9 : 121329 - 121343
  • [8] PET image super-resolution using generative adversarial networks
    Song, Tzu-An
    Chowdhury, Samadrita Roy
    Yang, Fan
    Dutta, Joyita
    NEURAL NETWORKS, 2020, 125 : 83 - 91
  • [9] A comparison of Generative Adversarial Networks for image super-resolution
    Cobelli, Patricia
    Nesmachnow, Sergio
    Toutouh, Jamal
    2022 IEEE LATIN AMERICAN CONFERENCE ON COMPUTATIONAL INTELLIGENCE (LA-CCI), 2022, : 30 - 35
  • [10] Generative Adversarial Networks for Medical Image Super-resolution
    Zhao, Min
    Naderian, Amirkhashayar
    Sanei, Saeid
    2021 INTERNATIONAL CONFERENCE ON E-HEALTH AND BIOENGINEERING (EHB 2021), 9TH EDITION, 2021,