Predictive Biomarker Identification for Biopharmaceutical Development

被引:2
|
作者
Huang, Xin [1 ]
Li, Hesen [2 ]
Gu, Yihua [1 ]
Chan, Ivan S. F. [1 ]
机构
[1] AbbVie Inc, Data & Stat Sci, 1 North Waukegan Rd, N Chicago, IL 60064 USA
[2] Univ Illinois, Div Epidemiol & Biostat, Chicago, IL USA
来源
关键词
Causal effect; Model selection; variable selection; Precision medicine; Subgroup identification; Treatment effect heterogeneity; CAUSAL INFERENCE; HIDRADENITIS SUPPURATIVA;
D O I
10.1080/19466315.2020.1819404
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Biomarkers are the foundation of precision medicine. The identification of prognostic and predictive biomarkers is an important scientific component in advancing the drug discovery and development pipeline. Many machine learning methods have been developed to identify important prognostic biomarkers. However, most existing algorithms are not applicable for identifying predictive biomarkers because individual treatment effect is not observable. In this article, we focus on the discussion of how to modify popular ensemble learning methods and use off-the-shelf machine learning software to identify important predictive biomarker for continuous, binary, and time-to-event endpoints. We perform simulation studies to compare different methods, and we present a real example that leads to successful subgroup identification for an immunological disease treatment.
引用
收藏
页码:239 / 247
页数:9
相关论文
共 50 条
  • [1] Model Identification and Model Predictive Control of Biopharmaceutical and Biomedical Systems
    Rashid, Mudassir M.
    Sun, Xiaoyu
    Askari, Mohammad Reza
    Cinar, Ali
    IFAC PAPERSONLINE, 2022, 55 (07): : 51 - 56
  • [2] Receptor occupancy assessment by flow cytometry as a pharmacodynamic biomarker in biopharmaceutical development
    Liang, Meina
    Schwickart, Martin
    Schneider, Amy K.
    Vainshtein, Inna
    Del Nagro, Christopher
    Standifer, Nathan
    Roskos, Lorin K.
    CYTOMETRY PART B-CLINICAL CYTOMETRY, 2016, 90 (02) : 117 - 127
  • [3] Using knockoffs for controlled predictive biomarker identification
    Sechidis, Konstantinos
    Kormaksson, Matthias
    Ohlssen, David
    STATISTICS IN MEDICINE, 2021, 40 (25) : 5453 - 5473
  • [4] Identification of a Predictive Biomarker for Hematologic Toxicities of Gemcitabine
    Matsubara, Junichi
    Ono, Masaya
    Negishi, Ayako
    Ueno, Hideki
    Okusaka, Takuji
    Furuse, Junji
    Furuta, Koh
    Sugiyama, Emiko
    Saito, Yoshiro
    Kaniwa, Nahoko
    Sawada, Junichi
    Honda, Kazufumi
    Sakuma, Tomohiro
    Chiba, Tsutomu
    Saijo, Nagahiro
    Hirohashi, Setsuo
    Yamada, Tesshi
    JOURNAL OF CLINICAL ONCOLOGY, 2009, 27 (13) : 2261 - 2268
  • [5] The role of predictive biopharmaceutical modeling and simulation in drug development and regulatory evaluation
    Jiang, Wenlei
    Kim, Stephanie
    Zhang, Xinyuan
    Lionberger, Robert A.
    Davit, Barbara M.
    Conner, Dale P.
    Yu, Lawrence X.
    INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2011, 418 (02) : 151 - 160
  • [6] Identification of a candidate biomarker predictive of the response to allergen immunotherapy
    Bouley, J.
    Jain, K.
    Caillot, N.
    Mascarell, L.
    Lombardi, V
    Baron-Bodo, V
    Batard, T.
    Nony, E.
    Moingeon, P.
    ALLERGY, 2013, 68 : 177 - 178
  • [7] Identification and classification of host cell proteins during biopharmaceutical process development
    Wilson, Louisa J.
    Lewis, Will
    Kucia-Tran, Richard
    Bracewell, Daniel G.
    BIOTECHNOLOGY PROGRESS, 2022, 38 (01)
  • [8] Bayesian additive decision trees of biomarker by treatment interactions for predictive biomarker detection and subgroup identification
    Zhao, Yang
    Zheng, Wei
    Zhuo, Daisy Y.
    Lu, Yuefeng
    Ma, Xiwen
    Liu, Hengchang
    Zeng, Zhen
    Laird, Glen
    JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2018, 28 (03) : 534 - 549
  • [9] Progress in biopharmaceutical development
    Kesik-Brodacka, Malgorzata
    BIOTECHNOLOGY AND APPLIED BIOCHEMISTRY, 2018, 65 (03) : 306 - 322
  • [10] Accelerating biopharmaceutical development
    不详
    CHEMICAL ENGINEERING PROGRESS, 2007, 103 (05) : 18 - 18