We develop connections between Harnack inequalities for the heat flow of diffusion operators with curvature bounded from below and optimal transportation. Through heat kernel inequalities, a new isoperimetric-type Harnack inequality is emphasized. Commutation properties between the heat and Hopf-Lax semigroups are developed consequently, providing direct access to heat flow contraction in Wasserstein spaces
机构:
Univ Marne la Vallee, CNRS, UMR 8050, Lab Anal & Math Appl, F-77454 Marne la Vallee 2, FranceUniv Marne la Vallee, CNRS, UMR 8050, Lab Anal & Math Appl, F-77454 Marne la Vallee 2, France
Cordero-Erausquin, D
Gangbo, W
论文数: 0引用数: 0
h-index: 0
机构:
Univ Marne la Vallee, CNRS, UMR 8050, Lab Anal & Math Appl, F-77454 Marne la Vallee 2, FranceUniv Marne la Vallee, CNRS, UMR 8050, Lab Anal & Math Appl, F-77454 Marne la Vallee 2, France
Gangbo, W
Houdré, C
论文数: 0引用数: 0
h-index: 0
机构:
Univ Marne la Vallee, CNRS, UMR 8050, Lab Anal & Math Appl, F-77454 Marne la Vallee 2, FranceUniv Marne la Vallee, CNRS, UMR 8050, Lab Anal & Math Appl, F-77454 Marne la Vallee 2, France
Houdré, C
RECENT ADVANCES IN THE THEORY AND APPLICATIONS OF MASS TRANSPORT,
2004,
353
: 73
-
94