On Harnack inequalities and optimal transportation

被引:0
|
作者
Bakry, Dominique [1 ]
Gentil, Ivan [1 ]
Ledoux, Michel [2 ]
机构
[1] Univ Toulouse Paul Sebatier, Inst Math Toulouse, F-31062 Toulouse, France
[2] Univ Lyon 1, Inst Camille Jordan, CNRS UMR 5208, F-69622 Lyon, France
关键词
METRIC-MEASURE-SPACES; CURVATURE-DIMENSION CONDITION; RICCI CURVATURE; WASSERSTEIN DISTANCE; EULERIAN CALCULUS; EQUATIONS; GEOMETRY; HYPERCONTRACTIVITY; CONTRACTION; MANIFOLDS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop connections between Harnack inequalities for the heat flow of diffusion operators with curvature bounded from below and optimal transportation. Through heat kernel inequalities, a new isoperimetric-type Harnack inequality is emphasized. Commutation properties between the heat and Hopf-Lax semigroups are developed consequently, providing direct access to heat flow contraction in Wasserstein spaces
引用
收藏
页码:705 / 727
页数:23
相关论文
共 50 条
  • [1] Submanifolds, isoperimetric inequalities and optimal transportation
    Castillon, Philippe
    JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 259 (01) : 79 - 103
  • [2] Inequalities for generalized entropy and optimal transportation
    Cordero-Erausquin, D
    Gangbo, W
    Houdré, C
    RECENT ADVANCES IN THE THEORY AND APPLICATIONS OF MASS TRANSPORT, 2004, 353 : 73 - 94
  • [3] Nonlocal Harnack inequalities
    Di Castro, Agnese
    Kuusi, Tuomo
    Palatucci, Giampiero
    JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 267 (06) : 1807 - 1836
  • [4] LOGARITHMIC HARNACK INEQUALITIES
    Chung, F. R. K.
    Yau, S. -T.
    MATHEMATICAL RESEARCH LETTERS, 1996, 3 (06) : 793 - 812
  • [5] Harnack Inequalities: An Introduction
    Moritz Kassmann
    Boundary Value Problems, 2007
  • [6] Harnack inequalities: An introduction
    Kassmann, Moritz
    BOUNDARY VALUE PROBLEMS, 2007, 2007 (1)
  • [7] Harnack and shift Harnack inequalities for SDEs with integrable drifts
    Huang, Xing
    STOCHASTICS AND DYNAMICS, 2019, 19 (05)
  • [8] Stability of elliptic Harnack inequalities
    Zhen-Qing Chen
    Science China Mathematics, 2023, 66 : 2179 - 2190
  • [9] Stability of elliptic Harnack inequalities
    Chen, Zhen-Qing
    SCIENCE CHINA-MATHEMATICS, 2023, 66 (10) : 2179 - 2190
  • [10] Harnack inequalities for jump processes
    Bass, RF
    Levin, DA
    POTENTIAL ANALYSIS, 2002, 17 (04) : 375 - 388