Quantum transitions in interacting fields

被引:11
|
作者
Karpov, E
Ordonez, G
Petrosky, T
Prigogine, I
机构
[1] Int Solvay Inst Phys & Chem, B-1050 Brussels, Belgium
[2] Univ Texas, Ctr Studies Stat Mech & Complex Syst, Austin, TX 78712 USA
来源
PHYSICAL REVIEW A | 2002年 / 66卷 / 01期
关键词
D O I
10.1103/PhysRevA.66.012109
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In recent papers we have discussed the meaning of dressed excited quantum states. We have shown that these states can be formulated in terms of distribution functions outside the Hilbert space. Our approach applies to "nonintegrable" systems in the sense of Poincare. It involves the analytic continuation of the unitary operator U describing the transformation from bare to dressed stable states. This leads to a "star-unitary" operator Lambda. Interacting fields are nonintegrable systems obtained as a result of resonances. It is therefore natural to expect that our previous results remain valid for interacting fields. We consider a simple example, which corresponds to an extension of the usual Friedrichs model. This involves a local field in interaction with a bilocal scalar field. This model has been previously studied by one of the co-authors (I.P.). It is a simplified version of the model describing A-->B+C transition with quadratic interaction. The usual Bogoliubov transformation eliminates the field corresponding to A, while our method leads to strictly exponential decay of unstable field. The dressed field A corresponds to a singular distribution function outside the Liouville-Hilbert space. As in the Friedrichs model there exists two time scales-one for the preparation of a dressed state and depending on initial conditions called "Zeno period" and the other universal for the decay.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Interacting quantum fields
    Johnson, GE
    [J]. REVIEWS IN MATHEMATICAL PHYSICS, 1999, 11 (07) : 881 - 928
  • [2] Quantum groups and interacting quantum fields
    Brouder, C
    [J]. GROUP 24 : PHYSICAL AND MATHEMATICAL ASPECTS OF SYMMETRIES, 2003, 173 : 787 - 790
  • [3] INTERACTING QUANTUM FIELDS AND CHRONOMETRIC PRINCIPLE
    SEGAL, IE
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1976, 73 (10) : 3355 - 3359
  • [4] THE CLASSICAL QUANTUM ELECTRODYNAMICS OF INTERACTING FIELDS
    DRESDEN, M
    BROWN, HD
    [J]. PHYSICAL REVIEW, 1952, 85 (04): : 748 - 748
  • [5] Interacting quantum fields on a curved background
    Brunetti, R
    Fredenhagen, K
    [J]. XIITH INTERNATIONAL CONGRESS OF MATHEMATICAL PHYSICS (ICMP '97), 1999, : 186 - 190
  • [6] Observation of topological transitions in interacting quantum circuits
    P. Roushan
    C. Neill
    Yu Chen
    M. Kolodrubetz
    C. Quintana
    N. Leung
    M. Fang
    R. Barends
    B. Campbell
    Z. Chen
    B. Chiaro
    A. Dunsworth
    E. Jeffrey
    J. Kelly
    A. Megrant
    J. Mutus
    P. J. J. O’Malley
    D. Sank
    A. Vainsencher
    J. Wenner
    T. White
    A. Polkovnikov
    A. N. Cleland
    J. M. Martinis
    [J]. Nature, 2014, 515 : 241 - 244
  • [7] Observation of topological transitions in interacting quantum circuits
    Roushan, P.
    Neill, C.
    Chen, Yu
    Kolodrubetz, M.
    Quintana, C.
    Leung, N.
    Fang, M.
    Barends, R.
    Campbell, B.
    Chen, Z.
    Chiaro, B.
    Dunsworth, A.
    Jeffrey, E.
    Kelly, J.
    Megrant, A.
    Mutus, J.
    O'Malley, P. J. J.
    Sank, D.
    Vainsencher, A.
    Wenner, J.
    White, T.
    Polkovnikov, A.
    Cleland, A. N.
    Martinis, J. M.
    [J]. NATURE, 2014, 515 (7526) : 241 - 244
  • [8] Quantum phase transitions in the interacting boson model
    Cejnar, Pavel
    Jolie, Jan
    [J]. PROGRESS IN PARTICLE AND NUCLEAR PHYSICS, VOL 62, NO 1, 2009, 62 (01): : 210 - 256
  • [9] Density Matrix Formalism for Interacting Quantum Fields
    Kaeding, Christian
    Pitschmann, Mario
    [J]. UNIVERSE, 2022, 8 (11)
  • [10] QUANTUM EFFECTS OF INTERACTING FIELDS IN THE EARLY UNIVERSE
    HU, BL
    ZHANG, Y
    [J]. PHYSICAL REVIEW D, 1988, 37 (08): : 2151 - 2164