Some learning paradigms for granular computing

被引:2
|
作者
Yager, Ronald R. [1 ]
机构
[1] Iona Coll, Machine Intelligence Inst, New Rochelle, NY 10801 USA
关键词
D O I
10.1109/GRC.2006.1635750
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work we describe some learning paradigms for granular computing. In particular we discuss the Hierarchical Prioritized Structure and the participatory learning paradigm.
引用
收藏
页码:25 / 29
页数:5
相关论文
共 50 条
  • [1] Some models of granular computing
    Pei, Daowu
    GRC: 2007 IEEE INTERNATIONAL CONFERENCE ON GRANULAR COMPUTING, PROCEEDINGS, 2007, : 17 - 21
  • [2] Machine Learning in Granular Computing
    Hu, Hong
    Shi, Zhonghi
    ROUGH SETS AND KNOWLEDGE TECHNOLOGY, PROCEEDINGS, 2009, 5589 : 224 - 231
  • [3] Machine Learning as Granular Computing
    Hu, Hong
    Shi, Zhongzhi
    2009 IEEE INTERNATIONAL CONFERENCE ON GRANULAR COMPUTING ( GRC 2009), 2009, : 229 - 234
  • [4] Perception Learning as Granular Computing
    Hu, Hong
    Shi, Zhongzhi
    ICNC 2008: FOURTH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, VOL 3, PROCEEDINGS, 2008, : 272 - 276
  • [5] Granular computing in machine learning
    Degang Chen
    Weihua Xu
    Jinhai Li
    Granular Computing, 2019, 4 : 299 - 300
  • [6] Granular computing in machine learning
    Chen, Degang
    Xu, Weihua
    Li, Jinhai
    GRANULAR COMPUTING, 2019, 4 (03) : 299 - 300
  • [8] In-Memory Computing Accelerators for Emerging Learning Paradigms
    Reis, Dayane
    Laguna, Ann Franchesca
    Niemier, Michael
    Hu, Xiaobo Sharon
    2023 28TH ASIA AND SOUTH PACIFIC DESIGN AUTOMATION CONFERENCE, ASP-DAC, 2023, : 606 - 611
  • [9] Learning paradigms for communication and computing technologies in IoT systems
    Ejaz, Waleed
    Basharat, Mehak
    Saadat, Salman
    Khattak, Asad Masood
    Naeem, Muhammad
    Anpalagan, Alagan
    COMPUTER COMMUNICATIONS, 2020, 153 : 11 - 25
  • [10] Granular computing in actor-critic learning
    Peters, James F.
    2007 IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTATIONAL INTELLIGENCE, VOLS 1 AND 2, 2007, : 59 - 64