Robust mapping and localization in indoor environments using sonar data

被引:325
|
作者
Tardós, JD
Neira, J
Newman, PM
Leonard, JJ
机构
[1] Univ Zaragoza, Dept Informat & Ingn Sistemas, E-50018 Zaragoza, Spain
[2] MIT, Dept Ocean Engn, Cambridge, MA 02139 USA
来源
关键词
map building; local maps; data association; sonar sensors; Hough transform;
D O I
10.1177/027836402320556340
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
In this paper we describe a new technique for the creation of feature-based stochastic maps using standard Polaroid sonar sensors. The fundamental contributions of our proposal are: (1) a perceptual grouping process that permits the robust identification and localization of environmental features, such as straight segments and corners, from the sparse and noisy sonar data; (2) a map joining technique that allows the system to build a sequence of independent limited-size stochastic maps and join them in a globally consistent way; (3) a robust mechanism to determine which features in a stochastic map correspond to the same environment feature, allowing the system to update the stochastic map accordingly, and perform tasks such as revisiting and loop closing. We demonstrate the practicality of this approach by building a geometric map of a medium size, real indoor environment, with several people moving around the robot. Maps built from laser data for the same experiment are provided for comparison.
引用
收藏
页码:311 / 330
页数:20
相关论文
共 50 条
  • [1] Robust mapping and localization in indoor environments
    Minkuk Jung
    Jae-Bok Song
    [J]. Intelligent Service Robotics, 2017, 10 : 55 - 66
  • [2] Robust mapping and localization in indoor environments
    Jung, Minkuk
    Song, Jae-Bok
    [J]. INTELLIGENT SERVICE ROBOTICS, 2017, 10 (01) : 55 - 66
  • [3] Robust geometric-based localization in indoor environments using sonar range sensors
    Kim, J
    Pearce, RA
    Amato, NM
    [J]. 2002 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, VOLS 1-3, PROCEEDINGS, 2002, : 421 - 426
  • [4] A Probabilistic Sonar Sensor Model for Robust Localization of a Small-size Blimp in Indoor Environments using a Particle Filter
    Mueller, Joerg
    Rottmann, Axel
    Reindl, Leonhard M.
    Burgard, Wolfram
    [J]. ICRA: 2009 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1-7, 2009, : 663 - 668
  • [5] A new approach to sonar based indoor mapping localization
    Meghdari, A.
    Kobravi, K.
    Safyallah, H.
    Moeeni, M.
    Khatami, Y.
    Khasteh, H.
    [J]. Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol 7, Pts A and B, 2005, : 891 - 901
  • [6] A Robust Data Association for Simultaneous Localization and Mapping in Dynamic Environments
    Wong, Rex H.
    Xiao, Jizhong
    Joseph, Samleo L.
    [J]. INFORMATION-AN INTERNATIONAL INTERDISCIPLINARY JOURNAL, 2010, 13 (06): : 1869 - 1884
  • [7] A New Sonar-based Landmark for Localization in Indoor Environments
    A. Poncela
    C. Urdiales
    C. de Trazegnies
    F. Sandoval
    [J]. Soft Computing, 2007, 11 : 281 - 285
  • [8] A new sonar-based landmark for localization in indoor environments
    Poncela, A.
    Urdiales, C.
    de Trazegnies, C.
    Sandoval, F.
    [J]. SOFT COMPUTING, 2007, 11 (03) : 281 - 285
  • [9] Efficient and Robust Semantic Mapping for Indoor Environments
    Seichter, Daniel
    Langer, Patrick
    Wengefeld, Tim
    Hoechemer, Dominik
    Gross, Horst-Michael
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA 2022, 2022, : 9221 - 9227
  • [10] Towards Robust Methods for Indoor Localization using Interval Data
    Ramdani, Nacim
    Zeinalipour-Yazti, Demetrios
    Karamousadakis, Michalis
    Panayides, Andreas
    [J]. 2019 20TH INTERNATIONAL CONFERENCE ON MOBILE DATA MANAGEMENT (MDM 2019), 2019, : 403 - 408