Preconditioned Finite-Difference Frequency-Domain for Modelling Periodic Dielectric Structures - Comparisons with FDTD

被引:0
|
作者
Chabory, A. [1 ,3 ]
de Hon, B. P. [1 ]
Schilders, W. H. A. [2 ]
Tijhuis, A. G. [1 ]
机构
[1] Eindhoven Univ Technol, Dept Elect Engn, POB 513, NL-5600 MB Eindhoven, Netherlands
[2] Eindhoven Univ Technol, Dept Math & Comp Sci, POB 513, NL-5600 MB Eindhoven, Netherlands
[3] ENAC, Dept Elect, Toulouse, France
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Finite-difference techniques are very popular and versatile numerical tools in computational electromagnetics. In this paper, we propose a preconditioned finite-difference frequency-domain method (FDFD) to model periodic structures in 2D and 3D. The preconditioner follows from a modal decoupling approximation. Its use involves discrete Fourier transforms (via FFTs). We have set FDFD against an FDTD package for a typical test case, with identical spatial grids. We have observed that computation times for a full frequency sweep are comparable, while the accuracy is slightly better with FDFD.
引用
下载
收藏
页码:599 / +
页数:2
相关论文
共 50 条
  • [1] Finite-difference frequency-domain (FDFD) modelling of EMI by ESD
    Angeli, Marco
    Cardelli, Ermanno
    1600, IEEE, Piscataway, NJ, United States (31):
  • [2] FINITE-DIFFERENCE FREQUENCY-DOMAIN TREATMENT OF OPEN TRANSMISSION STRUCTURES
    SARKAR, TK
    MANELA, M
    NARAYANAN, V
    DJORDJEVIC, AR
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1990, 38 (11) : 1609 - 1616
  • [3] Propagation characteristics of periodic guided wave structures with a compact finite-difference frequency-domain method
    Wang, Xiao-Hua
    Wang, Bing-Zhong
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2008, 50 (07) : 1941 - 1944
  • [4] A hybrid absorbing boundary condition for frequency-domain finite-difference modelling
    Ren, Zhiming
    Liu, Yang
    JOURNAL OF GEOPHYSICS AND ENGINEERING, 2013, 10 (05)
  • [5] Analysis of singly and doubly periodic absorbers by frequency-domain finite-difference method
    Sun, WM
    Liu, KF
    Balanis, CA
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1996, 44 (06) : 798 - 805
  • [6] Fast Geometric Multigrid Preconditioned Finite-Difference Frequency-Domain Method for Borehole Electromagnetic Sensing
    Sun, Qingtao
    Hu, Yunyun
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [7] ANALYSIS OF FINITE PERIODIC DIELECTRIC GRATINGS BY THE FINITE-DIFFERENCE FREQUENCY-DOMAIN METHOD WITH THE SUB-ENTIRE-DOMAIN BASIS FUNCTIONS AND WAVELETS
    Zheng, G.
    Wang, B.-Z.
    Li, H.
    Liu, X.-F.
    Ding, S.
    PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER, 2009, 99 : 453 - 463
  • [8] Fast transform based preconditioners for 2D finite-difference frequency-domain - Waveguides and periodic structures
    Chabory, A.
    de Hon, B. P.
    Schilders, W. H. A.
    Tijhuis, A. G.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (16) : 7755 - 7767
  • [9] A new point-weighting finite-difference modelling for the frequency-domain wave equation
    Cheng, D. S.
    Chen, B. W.
    Chen, J. J.
    Wang, X. S.
    2018 INTERNATIONAL SYMPOSIUM ON POWER ELECTRONICS AND CONTROL ENGINEERING (ISPECE 2018), 2019, 1187
  • [10] Multiscale model reduction of finite-difference frequency-domain wave modelling in acoustic media
    Jiang, Wei
    Chen, Xuehua
    Zhao, Qingwei
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2023, 235 (02) : 1021 - 1034