Particle filtering based parameter estimation for systems with output-error type model structures

被引:111
|
作者
Ding, Jie [1 ]
Chen, Jiazhong [1 ]
Lin, Jinxing [1 ]
Wan, Lijuan [2 ]
机构
[1] Nanjing Univ Posts & Telecommun, Sch Automat & Artificial Intelligence, Nanjing 210023, Jiangsu, Peoples R China
[2] Qingdao Univ Sci & Technol, Coll Automat & Elect Engn, Qingdao 266061, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
STATE-SPACE SYSTEM; ESTIMATION ALGORITHM; NONLINEAR-SYSTEMS; IDENTIFICATION; DELAY; BIAS; RECOVERY;
D O I
10.1016/j.jfranklin.2019.04.027
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The output-error model structure is often used in practice and its identification is important for analysis of output-error type systems. This paper considers the parameter identification of linear and nonlinear output-error models. A particle filter which approximates the posterior probability density function with a weighted set of discrete random sampling points is utilized to estimate the unmeasurable true process outputs. To improve the convergence rate of the proposed algorithm, the scalar innovations are grouped into an innovation vector, thus more past information can be utilized. The convergence analysis shows that the parameter estimates can converge to their true values. Finally, both linear and nonlinear results are verified by numerical simulation and engineering. (C) 2019 Published by Elsevier Ltd on behalf of The Franklin Institute.
引用
收藏
页码:5521 / 5540
页数:20
相关论文
共 50 条
  • [1] Recursive parameter estimation algorithm for multivariate output-error systems
    Wang, Yanjiao
    Ding, Feng
    Wu, Minhu
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2018, 355 (12): : 5163 - 5181
  • [2] The data filtering based generalized stochastic gradient parameter estimation algorithms for multivariate output-error autoregressive systems using the auxiliary model
    Liu, Qinyao
    Ding, Feng
    MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 2018, 29 (04) : 1781 - 1800
  • [3] The data filtering based generalized stochastic gradient parameter estimation algorithms for multivariate output-error autoregressive systems using the auxiliary model
    Qinyao Liu
    Feng Ding
    Multidimensional Systems and Signal Processing, 2018, 29 : 1781 - 1800
  • [4] Aircraft parameter estimation using output-error methods
    Sandoval Goes, Luiz Carlos
    Hemerly, Elder Moreira
    De Oliveira Maciel, Benedito Carlos
    Neto, Wilson Rios
    Mendonca, Celso Braga
    Hoff, Joao
    INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2006, 14 (06) : 651 - 664
  • [5] A bias-corrected estimator for nonlinear systems with output-error type model structures
    Piga, Dario
    Toth, Roland
    AUTOMATICA, 2014, 50 (09) : 2373 - 2380
  • [6] Filtering Based Multi-Stage Recursive Least Squares Parameter Estimation Algorithm for Input Nonlinear Output-Error Autoregressive Systems
    Ma Junxia
    Chen Jing
    Ding Feng
    PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 1921 - 1925
  • [7] Parameter identification for input nonlinear output-error systems using the unknown variable estimation
    Shi, Yang
    Ding, Feng
    2007 AMERICAN CONTROL CONFERENCE, VOLS 1-13, 2007, : 2428 - +
  • [8] Least squares based iterative estimation for multi-input output-error systems using the data filtering
    Ding, Jiling
    Chen, Huibo
    PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 2070 - 2075
  • [9] Flight path reconstruction and parameter estimation using output-error method
    Carlos de Oliveira Maciel, Benedito
    Sandoval Goes, Luiz Carlos
    Hemerly, Elder Moreira
    Brasil Neto, Nei Salis
    SHOCK AND VIBRATION, 2006, 13 (4-5) : 379 - 392
  • [10] Multi-innovation parameter estimation for Hammerstein MIMO output-error systems based on the key-term separation
    Shen, Qianyan
    Ding, Feng
    IFAC PAPERSONLINE, 2015, 48 (08): : 457 - 462