System identification of linear structures using Hilbert transform and empirical mode decomposition

被引:0
|
作者
Yang, JN [1 ]
Lei, Y [1 ]
机构
[1] Univ Calif Irvine, Dept Civil & Environm Engn, Irvine, CA 92697 USA
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, simple procedures based on the Hilbert transform and Empirical Mode Decomposition are proposed to identify MDOF linear structural systems using the measured impulse response time histories. Measured response data are first decomposed into Intrinsic Mode Functions using the Empirical Mode Decomposition method. These Intrinsic Mode Functions are shown to be the modal responses. Then, the Hilbert transform is applied to each Intrinsic Mode Function to obtain the amplitude and phase angle time histories of each mode, from which natural frequencies, damping ratios and mode shapes as well as the physical mass, stiffness and proportional damping matrices of the structure are identified. The applications of the methodology presented are demonstrated through numerical simulations. Simulation results indicate that the system identification method presented offers a simple and effective tool for parametric identification of linear structures.
引用
收藏
页码:213 / 219
页数:7
相关论文
共 50 条
  • [1] System identification of linear structures using Hilbert transform and empirical mode decomposition
    Yang, Jann N.
    Lei, Ying
    [J]. Proceedings of the International Modal Analysis Conference - IMAC, 2000, 1 : 213 - 219
  • [2] Ultrasonic signal identification by empirical mode decomposition and Hilbert transform
    Chen, TL
    Que, PW
    Zhang, Q
    Liu, QK
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2005, 76 (08): : 1 - 6
  • [3] Identification of linear time-varying dynamical systems using Hilbert transform and empirical mode decomposition method
    Shi, Z. Y.
    Law, S. S.
    [J]. JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2007, 74 (02): : 223 - 230
  • [4] Railway infrastructure system diagnosis using empirical mode decomposition and Hilbert transform
    Oukhellou, Latifa
    Aknin, Patrice
    Delechelle, Eric
    [J]. 2006 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-13, 2006, : 3615 - 3618
  • [5] ECG-Based Personal Identification Using Empirical Mode Decomposition and Hilbert Transform
    Boostani, R.
    Sabeti, M.
    Omranian, S.
    Kouchaki, S.
    [J]. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY-TRANSACTIONS OF ELECTRICAL ENGINEERING, 2019, 43 (01) : 67 - 75
  • [6] ECG-Based Personal Identification Using Empirical Mode Decomposition and Hilbert Transform
    R. Boostani
    M. Sabeti
    S. Omranian
    S. Kouchaki
    [J]. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 2019, 43 : 67 - 75
  • [7] Identification of MDOF Non-Linear Uncoupled Dynamical Systems Using Hilbert Transform and Empirical Mode Decomposition Method
    Huang, Tian-li
    Ren, Wen-xin
    Lou, Meng-lin
    [J]. ADVANCES IN CIVIL ENGINEERING, PTS 1-6, 2011, 255-260 : 1676 - +
  • [8] System identification of offshore structures using empirical mode decomposition
    Varadarajan, N
    Nagarajaiah, S
    [J]. PROCEEDINGS OF THE FIFTEENTH (2005) INTERNATIONAL OFFSHORE AND POLAR ENGINEERING CONFERENCE, VOL 3, 2005, : 154 - 161
  • [9] Parameter Identification of Time-varying Dynamical System Using Hilbert Transform and Empirical Mode Decomposition: Experimental Investigation
    Chen, Jun
    Zhao, Guanyu
    [J]. DYNAMICS FOR SUSTAINABLE ENGINEERING, VOL 1, 2011, : 252 - 257
  • [10] Ranking of Sensitive Positions using Empirical Mode Decomposition and Hilbert Transform
    Verma, Nishchal K.
    Singh, Nitin K.
    Sevakula, Rahul K.
    Al Salour
    [J]. PROCEEDINGS OF THE 2014 9TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2014, : 1926 - +