Model identification of a servo-tracking system using fuzzy clustering

被引:0
|
作者
Nguyen, EM [1 ]
Prasad, NR [1 ]
机构
[1] New Mexico State Univ, Klipsch Sch Elect & Comp Engn, Las Cruces, NM 88003 USA
关键词
system identification; fuzzy clustering;
D O I
10.1142/S0218488599000295
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper investigates the use of Fuzzy Clustering as a means for model identification of a complex and highly non-linear servo-tracking system when only observational data is available. The use of Fuzzy Clustering facilitates automatic generation of rules and its antecedent parameters. The consequent of the model is then formulated in the form of Takagi, Sugeno and Kang (TSK), and its parameters determined by the Least Squares Method (LSM).
引用
收藏
页码:337 / 346
页数:10
相关论文
共 50 条
  • [1] Model identification of a servo-tracking system using Fuzzy Clustering
    Nguyen, Eric M.
    Prasad, Nadipuram R.
    [J]. International Journal of Uncertainty, Fuzziness and Knowlege-Based Systems, 1999, 7 (04): : 337 - 346
  • [2] A new digital servo-tracking control theory using subspace stabilization techniques
    Hughes, WM
    Johnson, CD
    [J]. PROCEEDINGS OF THE TWENTY-NINTH SOUTHEASTERN SYMPOSIUM ON SYSTEM THEORY, 1997, : 17 - 22
  • [3] Multiple model tracking using fuzzy clustering
    Gray, JE
    Aluouani, AT
    [J]. SIGNAL AND DATA PROCESSING OF SMALL TARGETS 2004, 2004, 5428 : 90 - 101
  • [4] Fuzzy model identification using support vector clustering method
    Uçar, A
    Demir, Y
    Güzelis, C
    [J]. ARTIFICIAL NEURAL NETWORKS AND NEURAL INFORMATION PROCESSING - ICAN/ICONIP 2003, 2003, 2714 : 225 - 233
  • [5] Higher order fuzzy system identification using subtractive clustering
    Demirli, K
    Muthukumaran, P
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2000, 9 (3-4) : 129 - 158
  • [6] A clustering algorithm for fuzzy model identification
    Chen, JQ
    Xi, YG
    Zhang, ZJ
    [J]. FUZZY SETS AND SYSTEMS, 1998, 98 (03) : 319 - 329
  • [7] A clustering algorithm based TS fuzzy model for tracking dynamical system data
    Dam, Tanmoy
    Deb, Alok Kanti
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2017, 354 (13): : 5617 - 5645
  • [8] On system identification via fuzzy clustering for fuzzy modeling
    Lee, HS
    [J]. 1998 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS, VOLS 1-5, 1998, : 1956 - 1961
  • [9] Nonlinear Servo Adaptive Fuzzy Tracking
    Garrido, Ruben
    Calderon, Dora
    Soria, Alberto
    [J]. MICAI 2007: SIXTH MEXICAN INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2008, : 285 - 293
  • [10] Supervised Hierarchical Clustering in Fuzzy Model Identification
    Hartmann, Benjamin
    Baenfer, Oliver
    Nelles, Oliver
    Sodja, Anton
    Teslic, Luka
    Skrjanc, Igor
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2011, 19 (06) : 1163 - 1176