Algebraic structure of n-body systems

被引:3
|
作者
Sorace, E [1 ]
机构
[1] Univ Florence, Ist Nazl Fis Nucl, Dipartimento Fis, I-50019 Sesto Fiorentino, FI, Italy
来源
ANNALES HENRI POINCARE | 2002年 / 3卷 / 04期
关键词
D O I
10.1007/s00023-002-8630-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A general method to easily build global and relative operators for any number n of elementary systems if they are defined for 2 is presented. It is based on properties of the morphisms valued in the tensor products of algebras of the kinematics and it allows also the generalization to any n of relations demonstrated for two. The coalgebra structures play a peculiar role in the explicit Constructions. Three examples are presented concerning the Galilei, Poincare and deformed Galilei algebras.
引用
收藏
页码:659 / 671
页数:13
相关论文
共 50 条
  • [1] Algebraic Structure of n-Body Systems
    E. Sorace
    Annales Henri Poincaré, 2002, 3 : 659 - 671
  • [3] N-BODY RELATIVISTIC SYSTEMS
    DROZVINCENT, P
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1979, 288 (22): : 1045 - 1048
  • [4] Chaos in N-body systems
    Boccaletti, D
    Pucacco, G
    PLANETARY AND SPACE SCIENCE, 1998, 46 (11-12) : 1557 - 1566
  • [5] A quasi-exactly solvable N-body problem with the sl(N+1) algebraic structure
    Hou, XR
    Shifman, M
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1999, 14 (19): : 2993 - 3003
  • [6] Gravothermal expansion in N-body systems
    Endoh, H
    Fukushige, T
    Makino, J
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN, 1997, 49 (03) : 345 - 352
  • [7] Clustering in N-body gravitating systems
    Bottaccio, M
    Pietronero, L
    Amici, A
    Miocchi, P
    Dolcetta, RC
    Montuori, M
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2002, 305 (1-2) : 247 - 252
  • [8] Improbability of Collisions in n-Body Systems
    Stefan Fleischer
    Andreas Knauf
    Archive for Rational Mechanics and Analysis, 2019, 234 : 1007 - 1039
  • [9] ORBITAL DEFLECTIONS IN N-BODY SYSTEMS
    HUANG, SQ
    DUBINSKI, J
    CARLBERG, RG
    ASTROPHYSICAL JOURNAL, 1993, 404 (01): : 73 - 80
  • [10] Stability of motion of N-body systems
    ElZant, AA
    CHAOS IN GRAVITATIONAL N-BODY SYSTEMS, 1996, : 179 - 184