Video splicing detection and localization based on multi-level deep feature fusion and reinforcement learning

被引:11
|
作者
Jin, Xiao [1 ]
He, Zhen [1 ]
Xu, Jing [1 ]
Wang, Yongwei [2 ]
Su, Yuting [3 ]
机构
[1] Nankai Univ, Coll Artificial Intelligence, Tianjin 300350, Peoples R China
[2] Nanyang Technol Univ, Joint NTU WeBank Res Ctr Fintech, Singapore 639798, Singapore
[3] Tianjin Univ, Sch Elect & Informat Engn, Tianjin 300072, Peoples R China
基金
中国国家自然科学基金;
关键词
Object-based forgery detection in videos; Video forensics; Video splicing detection; Splicing forgery detection; IMAGE; FORGERY; FORENSICS; NETWORK;
D O I
10.1007/s11042-022-13001-z
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Splicing forgery refers to copying some regions of a video or an image to another video/image. Although image splicing detection has been studied for many years, video splicing detection has attracted relatively much less attention. In this paper, we proposed a novel framework for video splicing detection by modeling this forensic task as a video object segmentation problem. Based on the nature of this forgery operation, discontinuous noise distribution and object contours are adopted as traces to guide the localization results. The method consists of three modules: EXIF-consistency prediction, suspected region tracking, and semantic segmentation. To bridge the gap between sensor-level and semantic-level features, three modules in our framework are integrated for final tampered areas detection. Firstly, we use the EXIF-consistency prediction module to extract sensor-level traces from tampered areas. Then, we employ a deep reinforcement learning-based method for tracking suspected regions. Finally, a semantic segmentation module is adopted to localize the final results of the tampered regions. Compared with several state-of-the-art forensic approaches, our method demonstrates superiority in publicly available datasets. In terms of F1 score, our method achieves 0.623 in GRIP dataset.
引用
收藏
页码:40993 / 41011
页数:19
相关论文
共 50 条
  • [1] Video splicing detection and localization based on multi-level deep feature fusion and reinforcement learning
    Xiao Jin
    Zhen He
    Jing Xu
    Yongwei Wang
    Yuting Su
    Multimedia Tools and Applications, 2022, 81 : 40993 - 41011
  • [2] Radar and Vision Deep Multi-Level Feature Fusion Based on Deep Learning
    Zhang Zhouping
    Yu Qin
    Wang Xiaoliang
    Zhang Qiancheng
    Bin Xin
    2024 4TH INTERNATIONAL CONFERENCE ON COMPUTER, CONTROL AND ROBOTICS, ICCCR 2024, 2024, : 81 - 88
  • [3] Multi-level feature splicing 3D network based on multi-task joint learning for video anomaly detection
    Li, Yang
    Tong, Guoxiang
    NEUROCOMPUTING, 2025, 636
  • [4] A deep clustering by multi-level feature fusion
    Haiwei Hou
    Shifei Ding
    Xiao Xu
    International Journal of Machine Learning and Cybernetics, 2022, 13 : 2813 - 2823
  • [5] A deep clustering by multi-level feature fusion
    Hou, Haiwei
    Ding, Shifei
    Xu, Xiao
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2022, 13 (10) : 2813 - 2823
  • [6] Multi-Level Drowsiness Detection Based on Deep Feature Fusion of Eye and Head Pose
    Ye, Fang
    Li, Shunxin
    Yuan, Xin
    Li, Longfei
    PROCEEDINGS OF THE 2021 IEEE INTERNATIONAL CONFERENCE ON PROGRESS IN INFORMATICS AND COMPUTING (PIC), 2021, : 107 - 111
  • [7] A Multi-level Feature Enhancement Network for Image Splicing Localization
    Zhang, Zeyu
    Cao, Yun
    Zhao, Xianfeng
    DIGITAL FORENSICS AND WATERMARKING, IWDW 2021, 2022, 13180 : 3 - 16
  • [8] Multi-level and Multi-modal Target Detection Based on Feature Fusion
    Cheng T.
    Sun L.
    Hou D.
    Shi Q.
    Zhang J.
    Chen J.
    Huang H.
    Qiche Gongcheng/Automotive Engineering, 2021, 43 (11): : 1602 - 1610
  • [9] Binary Code Vulnerability Detection Based on Multi-Level Feature Fusion
    Wu, Guangli
    Tang, Huili
    IEEE ACCESS, 2023, 11 : 63904 - 63915
  • [10] Product Evaluation Prediction Model Based on Multi-Level Deep Feature Fusion
    Zhou, Qingyan
    Li, Hao
    Zhang, Youhua
    Zheng, Junhong
    FUTURE INTERNET, 2023, 15 (01):