Visual data mining for quantized spatial data

被引:0
|
作者
Braverman, A [1 ]
Kahn, B [1 ]
机构
[1] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA
来源
COMPSTAT 2004: PROCEEDINGS IN COMPUTATIONAL STATISTICS | 2004年
关键词
massive data sets; cluster analysis; multivariate visualization;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In previous papers we've shown how a well known data compression algorithm called Entropy-constrained Vector Quantization (ECVQ; [3]) can be modified to reduce the size and complexity of very large, satellite data sets. In this paper, we discuss how to visualize and understand the content of such reduced data sets. We developed a Java tool to facilitate this using simple multivariate visualization, and interactively performing further data reduction on user selected spatial subsets. This enables analysts to compare reduced representations of the data for different regions and varying spatial resolutions. The ultimate aim is to explain physically observed differences, trends, patterns and anomolies in the data.
引用
收藏
页码:61 / 72
页数:12
相关论文
共 50 条
  • [1] Visual data mining of large spatial data sets
    Keim, DA
    Panse, C
    Sips, M
    DATABASES IN NETWORKED INFORMATION SYSTEMS, PROCEEDINGS, 2003, 2822 : 201 - 215
  • [2] Visual mining of spatial time series data
    Andrienko, G
    Andrienko, N
    Gatalsky, P
    KNOWLEDGE DISCOVERY IN DATABASES: PKDD 2004, PROCEEDINGS, 2004, 3202 : 524 - 527
  • [3] Pixel based visual data mining of geo-spatial data
    Keim, DA
    Panse, C
    Sips, M
    North, SC
    COMPUTERS & GRAPHICS-UK, 2004, 28 (03): : 327 - 344
  • [4] A prototype design of visual spatial data mining system
    Yang, PF
    Zhang, T
    IGARSS 2005: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-8, PROCEEDINGS, 2005, : 5614 - 5617
  • [5] Spatial data processing and spatial data mining
    Research Center for Hazard Monitoring and Prevention, Wuhan University, 129 Luoyu Road, Wuhan 430079, China
    不详
    Wuhan Daxue Xuebao (Xinxi Kexue Ban), 2006, 1 (1-4+8):
  • [6] Visual data mining
    Eidenberger, H
    INTERNET MULTIMEDIA MANAGEMENT SYSTEMS V, 2004, 5601 : 121 - 132
  • [7] Visual data mining
    Wegman, EJ
    STATISTICS IN MEDICINE, 2003, 22 (09) : 1383 - 1397
  • [8] Visual data mining
    Wong, PC
    IEEE COMPUTER GRAPHICS AND APPLICATIONS, 1999, 19 (05) : 20 - 21
  • [9] PixelMaps: A new visual data mining approach for analyzing large spatial data sets
    Keim, DA
    Panse, C
    Sips, M
    North, SC
    THIRD IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2003, : 565 - 568
  • [10] An integrated platform for spatial data mining and interactive visual analysis
    May, M
    Savinov, A
    DATA MINING III, 2002, 6 : 51 - 60