Stability properties for quasilinear parabolic equations with measure data

被引:5
|
作者
Bidaut-Veron, Marie-Francoise [1 ]
Nguyen Quoc Hung [1 ]
机构
[1] CNRS, Lab Math & Phys Theor, Fac Sci, UMR 7350, F-37200 Tours, France
关键词
Quasilinear parabolic equations; measure data; renormalized solutions; stability; Landes-time approximations; Steklov time-averages; RENORMALIZED SOLUTIONS; EXISTENCE; CAPACITY; ENTROPY;
D O I
10.4171/JEMS/552
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Omega be a bounded domain in R-N, and Q = Omega x (0, T). We study problems of the model type {u(t) - Delta(p)u = mu in Q, u = 0 on partial derivative Omega x (0, T), u(0) = u(0) in Omega, where p > 1, mu is an element of M-b(Q) and u(0) is an element of L-1 (Omega). Our main result is a stability theorem extending the results of Dal Maso, Murat, Orsina and Prignet for the elliptic case, valid for quasilinear operators u bar right arrow A(u) = div(A(x, t, del u)).
引用
收藏
页码:2103 / 2135
页数:33
相关论文
共 50 条