Understanding Local Defects in Li-Ion Battery Electrodes through Combined DFT/NMR Studies: Application to LiVPO4F

被引:40
|
作者
Bamine, T. [1 ,2 ]
Boivin, E. [1 ,2 ,6 ]
Boucher, F. [3 ]
Messinger, R. J. [2 ,4 ,5 ]
Salager, E. [2 ,4 ]
Deschamps, M. [2 ,4 ]
Masquelier, C. [2 ,6 ]
Croguennec, L. [1 ,2 ]
Menetrier, M. [1 ,2 ]
Carlier, D. [1 ,2 ]
机构
[1] Univ Bordeaux, CNRS, Bordeaux INP, ICMCB UPR 9048, F-33600 Pessac, France
[2] Reseau Francais Stockage Electrochim Energie, RS2E, FR CNRS 3459, F-80039 Amiens 1, France
[3] Univ Nantes, CNRS, Inst Mat Jean Rouxel IMN, F-44322 Nantes, France
[4] Univ Orleans, CNRS, CEMHTI, UPR 3079, Orleans, France
[5] CUNY City Coll, Dept Chem Engn, New York, NY 10031 USA
[6] Univ Picardie Jules Verne, CNRS UMR 7314, Lab Reactivite & Chim Solides, F-80039 Amiens 1, France
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2017年 / 121卷 / 06期
关键词
FERMI CONTACT SHIFTS; NMR; ELECTROCHEMISTRY; ENVIRONMENTS; FE;
D O I
10.1021/acs.jpcc.6b11747
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In a recent study, we showed by solid-state NMR that LiVPO4F, which is a promising material as positive electrode for Li-ion batteries, often exhibits some defects that may affect its electrochemical behavior. In this paper, we use DFT calculations based on the projector augmented-wave (PAW) method in order to model possible defects in this (paramagnetic) material and to compute, the Fermi contact shifts expected for Li nuclei located in their proximity. The advantage of the PAW approach versus FP-LAPW we have beenpreviously using is that it allows considering large supercells suitable to model a diluted defect. In the first part of this paper, we aim to validate the Fermi contact shifts calculation using the PAW approach within the VASP code. Then we apply this strategy for modeling possible defects in LiVP0(4)F. By analogy with the already existing homeotypic LiVOPO4 phase, we first replace one fluoride ion, along the VO2F4 chains, :by an oxygen one and consider, in a second step, an association with a lithium vacancy. As a result, the agreement between the calculated NMR spectra and the experimental one is satisfying. In both cases, the local electronic structure and the spin transfer mechanisms from V3+ or V4+ ions to the Li nuclei are analyzed.
引用
收藏
页码:3219 / 3227
页数:9
相关论文
共 12 条
  • [1] Revealing Defects in Crystalline Lithium-Ion Battery Electrodes by Solid-State NMR: Applications to LiVPO4F
    Messinger, Robert J.
    Menetrier, Michel
    Salager, Elodie
    Boulineau, Adrien
    Duttine, Mathieu
    Carlier, Dany
    Mba, Jean-Marcel Ateba
    Croguennec, Laurence
    Masquelier, Christian
    Massiot, Dominique
    Deschamps, Michael
    CHEMISTRY OF MATERIALS, 2015, 27 (15) : 5212 - 5221
  • [2] Preparation of Cr-doped LiVPO4F and electrochemical studies on Li extraction/insertion performances for lithium-ion batteries
    Li, YZ
    Zhou, Z
    Ren, JX
    Gao, XP
    Yan, J
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2006, 22 (03) : 477 - 482
  • [3] Understanding the Solvation Structure of Li-Ion Battery Electrolytes Using DFT-Based Computation and 1H NMR Spectroscopy
    Im, Julia
    Halat, David M.
    Fang, Chao
    Hickson, Darby T.
    Wang, Rui
    Balsara, Nitash P.
    Reimer, Jeffrey A.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2022, 126 (47): : 9893 - 9900
  • [4] Characterising local environments in high energy density Li-ion battery cathodes: a combined NMR and first principles study of LiFexCo1-xPO4
    Strobridge, Fiona C.
    Middlemiss, Derek S.
    Pell, Andrew J.
    Leskes, Michal
    Clement, Raphaele J.
    Pourpoint, Frederique
    Lu, Zhouguang
    Hanna, John V.
    Pintacuda, Guido
    Emsley, Lyndon
    Samoson, Ago
    Grey, Clare P.
    JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (30) : 11948 - 11957
  • [5] LiVPO4F@C particles anchored on boron-doped graphene sheets with outstanding Li+ storage performance for high-voltage Li-ion battery
    Yang, Yongan
    Chen, Cheng
    Sun, Huan
    SOLID STATE IONICS, 2019, 331 (6-11) : 6 - 11
  • [6] Local atomic and electronic structure in the LiVPO4(F,O) tavorite-type materials from solid-state NMR combined with DFT calculations
    Bamine, Tahya
    Boivin, Edouard
    Masquelier, Christian
    Croguennec, Laurence
    Salager, Elodie
    Carlier, Dany
    MAGNETIC RESONANCE IN CHEMISTRY, 2020, 58 (11) : 1109 - 1117
  • [7] Assessing Manufacturing-Performance Correlation On LiMn0.7Fe0.3PO4 Electrodes For Application In Upscaled Li-Ion Battery Cells
    Minnetti, Luca
    Maddar, Faduma M.
    Haridas, Anupriya K.
    Capener, Matthew
    Nobili, Francesco
    Hasa, Ivana
    BATTERIES & SUPERCAPS, 2024,
  • [8] Understanding the stability of fluorosulfate Li-ion battery cathode materials: a thermochemical study of LiFe1-xMnxSO4F (0 ≤ x ≤ 1) polymorphs
    Radha, A. V.
    Furman, J. D.
    Ati, M.
    Melot, B. C.
    Tarascon, J. M.
    Navrotsky, A.
    JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (46) : 24446 - 24452
  • [9] Fabrication and performance of Li4Ti5O12/C Li-ion battery electrodes using combined double flame spray pyrolysis and pressure-based lamination technique
    Gockeln, Michael
    Pokhrel, Suman
    Meierhofer, Florian
    Glenneberg, Jens
    Schowalter, Marco
    Rosenauer, Andreas
    Fritsching, Udo
    Busse, Matthias
    Maedler, Lutz
    Kun, Robert
    JOURNAL OF POWER SOURCES, 2018, 374 : 97 - 106
  • [10] State of LiFePO4 Li-Ion Battery Electrodes after 6533 Deep-Discharge Cycles Characterized by Combined Micro-XRF and Micro-XRD
    Boesenberg, Ulrike
    Henriksen, Christian
    Rasmussen, Kaare Lund
    Chiang, Yet-Ming
    Garrevoet, Jan
    Ravnsbaek, Dorthe B.
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (04) : 4358 - 4368