Relationships between characteristic functions of Δn f and f

被引:4
|
作者
Lan, Shuang-Ting [1 ]
Chen, Zong-Xuan [1 ]
机构
[1] S China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Characteristic function; Borel exceptional value; Deficient value; DIFFERENCE-EQUATIONS;
D O I
10.1016/j.jmaa.2013.11.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we obtain the accurate relationships between the characteristic functions of a finite order meromorphic function f (z) and its forward differences Delta(n) f (z), where f (z) has two Borel exceptional values. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:922 / 942
页数:21
相关论文
共 50 条
  • [1] CHARACTERISTIC FUNCTIONS OF F AND T DISTRIBUTIONS
    IFRAM, AF
    SANKHYA-THE INDIAN JOURNAL OF STATISTICS SERIES A, 1970, 32 (SEP): : 350 - 352
  • [2] CHARACTERISTIC OF P(F) SET FOR MEROMORPHIC FUNCTIONS
    GAVRILOV, VI
    KANATNIKOV, AN
    DOKLADY AKADEMII NAUK SSSR, 1977, 232 (06): : 1237 - 1240
  • [3] ZEROS OF ULTRAMETRIC MEROMORPHIC FUNCTIONS f'f(n)(f - a)(k) - alpha
    Ojeda, Jacqueline
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2008, 1 (03) : 415 - 429
  • [5] Relationships between certain f -divergences
    Melbourne, James
    Madiman, Mokshay
    Salapaka, Murti, V
    2019 57TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2019, : 1068 - 1073
  • [6] On the functions ωf and Ωf
    Camargo, Javier
    Cancino, Johan
    Islas, Carlos
    MATHEMATICA SLOVACA, 2024, 74 (03) : 747 - 762
  • [7] Arithmetical functions of the form f ([g(n)])
    Puchta, JC
    Spilker, J
    ACTA MATHEMATICA HUNGARICA, 2002, 95 (03) : 187 - 199
  • [8] Arithmetical Functions of the Form f([g(n)])
    Jan-Christoph Puchta
    Jürgen Spilker
    Acta Mathematica Hungarica, 2002, 95 : 187 - 199
  • [9] On multiplicative functions with f(p plus q plus n0) = f (p) plus f (q) plus f (n0)
    Chen, Yong-Gao
    Fang, Jin-Hui
    Yuan, Pingzhi
    Zheng, Yueping
    JOURNAL OF NUMBER THEORY, 2016, 165 : 270 - 289
  • [10] ON FUNCTIONAL EQUATION F(MN)F((M,N)) = F(M)F(N)F((M,N))
    SHOCKLEY, JE
    PACIFIC JOURNAL OF MATHEMATICS, 1966, 18 (01) : 185 - &