Infinities of stable periodic orbits in systems of coupled oscillators

被引:7
|
作者
Ashwin, P
Rucklidge, AM
Sturman, R
机构
[1] Univ Exeter, Sch Math Sci, Exeter EX4 4QE, Devon, England
[2] Univ Leeds, Dept Appl Math, Leeds LS2 9JT, W Yorkshire, England
来源
PHYSICAL REVIEW E | 2002年 / 66卷 / 03期
关键词
D O I
10.1103/PhysRevE.66.035201
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We consider the dynamical behavior of coupled oscillators with robust heteroclinic cycles between saddles that may be periodic or chaotic. We differentiate attracting cycles into types that we call phase resetting and free running depending on whether the cycle approaches a given saddle along one or many trajectories. At loss of stability of attracting cycling, we show in a phase-resetting example the existence of an infinite family of stable periodic orbits that accumulate on the cycling, whereas for a free-running example loss of stability of the cycling gives rise to a single quasiperiodic or chaotic attractor.
引用
收藏
页码:1 / 035201
页数:4
相关论文
共 50 条
  • [1] Stable multisite periodic orbits in networks of weakly coupled bistable oscillators
    Ahn, T
    [J]. NONLINEARITY, 2000, 13 (01) : 29 - 42
  • [2] Stable periodic orbits in a pair of chaotic oscillators coupled by an extremely weak diffusive connection
    Mizobata, Kazunori
    Nakanishi, Yoshihide
    Konishi, Keiji
    Hara, Naoyuki
    [J]. NONLINEAR DYNAMICS, 2015, 79 (01) : 265 - 273
  • [3] Stable periodic orbits in a pair of chaotic oscillators coupled by an extremely weak diffusive connection
    Kazunori Mizobata
    Yoshihide Nakanishi
    Keiji Konishi
    Naoyuki Hara
    [J]. Nonlinear Dynamics, 2015, 79 : 265 - 273
  • [4] SYSTEMS WITH PERIODIC, ASYMPTOTICALLY STABLE ORBITS
    CHEWNING, WC
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 21 (01): : A135 - A135
  • [5] STABLE PERIODIC ORBITS OF HAMILTONIAN SYSTEMS
    KIRCHGRABER, U
    [J]. MECHANICS RESEARCH COMMUNICATIONS, 1976, 3 (04) : 297 - 301
  • [6] PERIODIC, QUASI-PERIODIC AND CHAOTIC ORBITS AND THEIR BIFURCATIONS IN A SYSTEM OF COUPLED OSCILLATORS
    AWREJCEWICZ, J
    SOMEYA, T
    [J]. JOURNAL OF SOUND AND VIBRATION, 1991, 146 (03) : 527 - 532
  • [7] Asymptotically stable periodic orbits of a coupled electromechanical system
    Dantas, M. J. H.
    Sampaio, R.
    Lima, R.
    [J]. NONLINEAR DYNAMICS, 2014, 78 (01) : 29 - 35
  • [8] Asymptotically stable periodic orbits of a coupled electromechanical system
    M. J. H. Dantas
    R. Sampaio
    R. Lima
    [J]. Nonlinear Dynamics, 2014, 78 : 29 - 35
  • [9] Impulsive periodic and quasi-periodic orbits of coupled oscillators with essential stiffness nonlinearity
    Kerschen, Gaetan
    Gendelman, Oleg
    Vakakis, Alexander F.
    Bergman, Lawrence A.
    McFarland, D. Michael
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2008, 13 (05) : 959 - 978
  • [10] PERTURBATIONS OF SYSTEMS WITH PERIODIC ASYMPTOTICALLY STABLE ORBITS
    CHEWNING, WC
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 1974, 16 (01) : 1 - 13