MODULUS OF CONTINUITY OF OPERATOR FUNCTIONS

被引:6
|
作者
Farforovskaya, Yu. B. [1 ]
Nikolskaya, L. [2 ]
机构
[1] State Univ Telecommun, Dept Math, St Petersburg, Russia
[2] Univ Bordeaux 1, Inst Math Bordeaux, F-33405 Talence, France
关键词
Selfadjoint operator; operator function; modulus of continuity; INTEGRALS;
D O I
10.1090/S1061-0022-09-01058-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A and B be bounded selfadjoint operators on a separable Hilbert space, and let f be a continuous function defined on an interval [a, b] containing the spectra of A and B. If omega(f) denotes the modulus of continuity of f, then parallel to f(A) - f(B)parallel to <= 4[log (b - a/parallel to A - B parallel to +1) + 1](2) . omega(f)(parallel to A - B parallel to). A similar result is true for unbounded selfadjoint operations, under sonic natural assumptions on the growth of f.
引用
收藏
页码:493 / 506
页数:14
相关论文
共 50 条