Sum of sequence spaces and matrix transformations

被引:11
|
作者
De Malafosse, B. [1 ]
机构
[1] Univ Havre, LMAH, F-76610 Le Havre, France
关键词
operator of first difference; Banach algebra with identity; matrix transformations;
D O I
10.1007/s10474-006-0106-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We are interested in the study of the sum E + F and the product E*F, when E and F are of the form s(xi), or s(xi)circle, or s(xi)((c)). Then we deal with the identities (E + F) (Delta(q)) = E and (E + F) (Delta(q)) = F. Finally we consider matrix transformations in the previous sets and study the identities ((E-p1 + F-p2) (Delta(q)), s(mu)) = S-alpha (p1) +beta(p2,mu) and (E + F (Delta(q)), s(gamma)) = S-beta,S-gamma.
引用
收藏
页码:289 / 311
页数:23
相关论文
共 50 条