Asymptotic properties of generalized Laguerre orthogonal polynomials

被引:26
|
作者
Alvarez-Noderse, R
Moreno-Balcázar, JJ
机构
[1] Univ Sevilla, Dept Anal Matemat, E-41080 Seville, Spain
[2] Univ Almeria, Dept Estadist & Matemat Aplicada, Almeria 04120, Spain
[3] Univ Granada, Inst Carlos I Fis Teor & Computac, E-18071 Granada, Spain
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2004年 / 15卷 / 02期
关键词
asymptotics; Laguerre polynomials; generalized Laguerre polynomials;
D O I
10.1016/S0019-3577(04)90012-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper we deal with the polynomials L-n((a,M,N)) (x) orthogonal with respect to the Sobolev inner product (p,q) = 1/Gamma(alpha+1) integral(0)(infinity)p(x)q(x)x(alpha)e(-x)dx + Mp(0)q(0) + Np'(0)q'(0), N, M greater than or equal to (0), alpha > -1, firstly introduced by Koekoek and Meijer in 1993 and extensively studied in the last years. We present some new asymptotic properties of these polynomials and also a limit relation between the zeros of these polynomials and the zeros of Bessel function J(alpha)(x). The results are illustrated with numerical examples. Also, some general asymptotic formulas for generalizations of these polynomials are conjectured.
引用
收藏
页码:151 / 165
页数:15
相关论文
共 50 条