Performance of an air-cathode microbial fuel cell under varied relative humidity conditions in the cathode chamber

被引:9
|
作者
Lee, Mungyu [1 ,2 ]
Kakarla, Ramesh [1 ]
Min, Booki [1 ]
机构
[1] Kyung Hee Univ, Dept Environm Sci & Engn, 1 Selocheon Dong, Yongin 446701, Gyeonggi Do, South Korea
[2] GIST, Sch Earth Sci & Environm Engn, Gwangju 61005, South Korea
基金
新加坡国家研究基金会;
关键词
Air-cathode MFC; Relative humidity; Cell voltage; Cathode potentials; Oxygen transport; POWER-GENERATION; MEMBRANE; OXYGEN; WATER; OPERATION; TEMPERATURE; SHEWANELLA;
D O I
10.1007/s00449-019-02122-9
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The performance of an air-cathode microbial fuel cell (MFC) with a cap arrangement was significantly affected by humidity conditions in the cathode. An MFC at a relative humidity (RH) of 88% produced a highest cell voltage of 0.42V (600 ohm) compared to other operations at 50% (0.34V) and 30% (0.29V) RHs. During polarization analysis, MFC operation at 88% RH produced a maximum power density of 0.377W/m(2) (a current density of 1.5A/m(2)), which was 1.8 and 2.9 times higher than with 50% and 30% RHs, respectively. Cyclic voltammogram analysis revealed a higher reduction current of -0.073 A with 88% RH. Furthermore, no increase in dissolved oxygen concentration in the anode chamber was observed with 88% RH. This result suggests that control of humidity conditions in cathode chamber could maximize power generation from an air-cathode MFC.
引用
收藏
页码:1247 / 1254
页数:8
相关论文
共 50 条
  • [1] Performance of an air-cathode microbial fuel cell under varied relative humidity conditions in the cathode chamber
    Mungyu Lee
    Ramesh Kakarla
    Booki Min
    [J]. Bioprocess and Biosystems Engineering, 2019, 42 : 1247 - 1254
  • [2] Influence of Humidity on Performance of Single Chamber Air-Cathode Microbial Fuel Cells with Different Separators
    Lee, Mungyu
    Kondaveeti, Sanath
    Jeon, Taeyeon
    Kim, Inhae
    Min, Booki
    [J]. PROCESSES, 2020, 8 (07)
  • [3] Electrochemical performance of microbial fuel cell with air-cathode
    Wen Qing
    Liu Zhi-Min
    Chen Ye
    Li Kai-Feng
    Zhu Ning-Zheng
    [J]. ACTA PHYSICO-CHIMICA SINICA, 2008, 24 (06) : 1063 - 1067
  • [4] Air humidity and water pressure effects on the performance of air-cathode microbial fuel cell cathodes
    Ahn, Yongtae
    Zhang, Fang
    Logan, Bruce E.
    [J]. JOURNAL OF POWER SOURCES, 2014, 247 : 655 - 659
  • [5] Rumen Inoculum Enhances Cathode Performance in Single-Chamber Air-Cathode Microbial Fuel Cells
    Vargas, Ignacio T.
    Tapia, Natalia
    Regan, John M.
    [J]. MATERIALS, 2022, 15 (01)
  • [6] Influence of Inoculum Pretreatment on the Performance of an Air-Cathode Single-Chamber Microbial Fuel Cell
    Tanikkul, Pinanong
    Pisutpaisal, Nipon
    [J]. 2015 INTERNATIONAL CONFERENCE ON ALTERNATIVE ENERGY IN DEVELOPING COUNTRIES AND EMERGING ECONOMIES, 2015, 79 : 641 - 645
  • [7] Determination of Microbial Growth by Protein Assay in an Air-Cathode Single Chamber Microbial Fuel Cell
    Li, Na
    Kakarla, Ramesh
    Moon, Jung Mi
    Min, Booki
    [J]. JOURNAL OF MICROBIOLOGY AND BIOTECHNOLOGY, 2015, 25 (07) : 1114 - 1118
  • [8] Effect of Cathodic Biofilm on the Performance of Air-Cathode Single Chamber Microbial Fuel Cells
    Ahmed, Jalal
    Kim, Sunghyun
    [J]. BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 2011, 32 (10): : 3726 - 3729
  • [9] Temporal variations of cathode performance in air-cathode single-chamber microbial fuel cells with different separators
    Ma, Jinxing
    Wang, Zhiwei
    Suor, Denis
    Liu, Shumeng
    Li, Jiaqi
    Wu, Zhichao
    [J]. JOURNAL OF POWER SOURCES, 2014, 272 : 24 - 33
  • [10] Effects of hydraulic pressure on the performance of single chamber air-cathode microbial fuel cells
    Cheng, Shaoan
    Liu, Weifeng
    Guo, Jian
    Sun, Dan
    Pan, Bin
    Ye, Yaoli
    Ding, Weijun
    Huang, Haobin
    Li, Fujian
    [J]. BIOSENSORS & BIOELECTRONICS, 2014, 56 : 264 - 270