Sign of Fourier coefficients of half-integral weight modular forms in arithmetic progressions

被引:0
|
作者
Darreye, Corentin [1 ]
机构
[1] Univ Bordeaux, CNRS, Bordeaux INP, IMB,UMR 5251, F-33400 Talence, France
关键词
Modular form; Fourier coefficient; Arithmetic progression; Sign; HECKE EIGENVALUES; TWISTS;
D O I
10.1007/s40993-020-00225-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f be a half-integral weight cusp form of level 4N for odd and squarefree N and let a(n) denote its nth normalized Fourier coefficient. Assuming that all the coefficients a(n) are real, we study the sign of a(n) when n runs through an arithmetic progression. As a consequence, we establish a lower bound for the number of integers n <= x such that a(n) > n(-alpha) where x and alpha are positive and f is not necessarily a Hecke eigenform.
引用
收藏
页数:24
相关论文
共 50 条