Rotating saddle trap as Foucault's pendulum

被引:25
|
作者
Kirillov, Oleg N. [1 ]
Levi, Mark [2 ]
机构
[1] Russian Acad Sci, Steklov Math Inst, Moscow 119991, Russia
[2] Penn State Univ, Dept Math, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
HANNAY ANGLE; STABILITY; EQUILIBRIUM; PARTICLE; GEOMETRY; SURFACE; PHYSICS; POINTS; FIELDS;
D O I
10.1119/1.4933206
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
One of the many surprising results found in the mechanics of rotating systems is the stabilization of a particle in a rapidly rotating planar saddle potential. Besides the counterintuitive stabilization, an unexpected precessional motion is observed. In this note, we show that this precession is due to a Coriolis- like force caused by the rotation of the potential. To our knowledge, this is the first example where such a force arises in an inertial reference frame. We also propose a simple mechanical demonstration of this effect. (C) 2016 American Association of Physics Teachers.
引用
收藏
页码:26 / 31
页数:6
相关论文
共 50 条
  • [1] ROTATING SADDLE PAUL TRAP
    RUECKNER, W
    GEORGI, J
    GOODALE, D
    ROSENBERG, D
    TAVILLA, D
    AMERICAN JOURNAL OF PHYSICS, 1995, 63 (02) : 186 - 187
  • [2] On Foucault's pendulum
    MacMillan, WD
    AMERICAN JOURNAL OF MATHEMATICS, 1915, 37 : 95 - 106
  • [3] The Foucault pendulum viewed as a spherical pendulum placed in a rotating reference system
    de Icaza-Herrera, Miguel
    Manuel Castano, Victor
    CANADIAN JOURNAL OF PHYSICS, 2016, 94 (01) : 15 - 22
  • [5] A Foucault's pendulum design
    Salva, Horacio R.
    Benavides, Ruben E.
    Perez, Julio C.
    Cuscueta, Diego J.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2010, 81 (11):
  • [6] Follies and Foucault's pendulum
    Holloway, M
    SCIENTIFIC AMERICAN, 2003, 288 (03) : 100 - 102
  • [7] Derrida's watch Foucault's pendulum
    Naas, M
    PHILOSOPHY TODAY, 1997, 41 (01) : 141 - 152
  • [8] Foucault's pendulum in elliptic space
    Pierpont, James
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1929, 31 (1-4) : 444 - 447
  • [9] FOUCAULT PENDULUM
    HUFF, LD
    REED, AR
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1968, 13 (02): : 241 - &
  • [10] Foucault's pendulum in the distributed control lab
    Rasche, A
    Tröger, P
    Dirska, M
    Polze, A
    NINTH IEEE INTERNATIONAL WORKSHOP ON OBJECT-ORIENTED REAL-TIME DEPENDABLE SYSTEMS, 2004, : 299 - 306