VO2(B) nanorods: solvothermal preparation, electrical properties, and conversion to rutile VO2 and V2O3

被引:117
|
作者
Corr, Serena A. [1 ,2 ]
Grossman, Madeleine [1 ,2 ]
Shi, Yifeng [3 ]
Heier, Kevin R. [4 ]
Stucky, Galen D. [1 ,2 ,3 ]
Seshadri, Ram [1 ,2 ,3 ]
机构
[1] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA
[2] Univ Calif Santa Barbara, Mat Res Lab, Santa Barbara, CA 93106 USA
[3] Univ Calif Santa Barbara, Dept Chem & Biochem, Santa Barbara, CA 93106 USA
[4] Air Prod & Chem Inc, Allentown, PA 18195 USA
基金
美国国家科学基金会;
关键词
VANADIUM DIOXIDE; HYDROTHERMAL SYNTHESIS; INSULATOR TRANSITION; OXIDES; NANOSTRUCTURES; DIFFRACTION; REDUCTION; NANOWIRES; BATTERIES;
D O I
10.1039/b900982e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The solvothermal reduction of V2O5 by formaldehyde or isopropanol yields nanorods of the metastable, monoclinic VO2(B) phase. The structural transition in VO2(B), which occurs near room temperature, has been monitored using electrical resistivity measurements, performed both on pressed pellets of the nanorods as well as on nanorods dispersed on patterned contacts. A sudden, 105 increase in the electrical resistivity upon cooling below 290 K is seen in measurements on VO2(B) samples. Such a transition in the electrical resistivity has not previously been reported in this material. The transition is reminiscent of the metal-to-insulator transition observed in the case of pressed pellets of polycrystalline rutile VO2 upon cooling below 340 K. The metastable VO2(B) nanorods are converted to rutile VO2 by heating in argon, and to corundum V2O3 by reducing in 5%H-2 : 95%N-2. In both transformations, the structural integrity of the nanorods is compromised, with large, dense, rutile VO2 crystallites and less well-defined nanorods of V2O3 being formed.
引用
收藏
页码:4362 / 4367
页数:6
相关论文
共 50 条
  • [1] In Situ Characterization on Thermal Transitions of VO2(B): Toward VO2(R) and V2O3
    Zhang Shaohong
    Fu Juan
    Su Qiucheng
    Wu Liangpeng
    Li Xinjun
    RARE METAL MATERIALS AND ENGINEERING, 2016, 45 (06) : 1374 - 1380
  • [2] IR spectra of VO2 and V2O3
    Botto, IL
    Vassallo, MB
    Baran, EJ
    Minelli, G
    MATERIALS CHEMISTRY AND PHYSICS, 1997, 50 (03) : 267 - 270
  • [3] Controlled synthesis of VO2(R), VO2(B), and V2O3 vanadium-oxide nanowires
    Jhih-Syuan Ke
    Sheng-Feng Weng
    Ming-Cheng Wu
    Chi-Shen Lee
    Journal of Nanoparticle Research, 2013, 15
  • [4] Controlled synthesis of VO2(R), VO2(B), and V2O3 vanadium-oxide nanowires
    Ke, Jhih-Syuan
    Weng, Sheng-Feng
    Wu, Ming-Cheng
    Lee, Chi-Shen
    JOURNAL OF NANOPARTICLE RESEARCH, 2013, 15 (07)
  • [5] VO2(B) conversion to VO2(A) and VO2(M) and their oxidation resistance and optical switching properties
    Zhang, Yifu
    MATERIALS SCIENCE-POLAND, 2016, 34 (01): : 169 - 176
  • [6] Electrodynamics of the vanadium oxides VO2 and V2O3
    Qazilbash, M. M.
    Schafgans, A. A.
    Burch, K. S.
    Yun, S. J.
    Chae, B. G.
    Kim, B. J.
    Kim, H. T.
    Basov, D. N.
    PHYSICAL REVIEW B, 2008, 77 (11)
  • [7] Angular-resolved photoemission on V2O3 and VO2
    Goering, E
    Schramme, M
    Muller, O
    Paulin, H
    Klemm, M
    denBoer, ML
    Horn, S
    PHYSICA B, 1997, 230 : 996 - 998
  • [8] Angular-resolved photoemission on V2O3 and VO2
    Univ of Augsburg, Augsburg, Germany
    Phys B Condens Matter, (996-998):
  • [9] REACTIONS OF SODIUM OXIDE WITH OXIDES VO2, V2O3, VO, AND VANADIUM METAL
    BARKER, MG
    HOOPER, AJ
    JOURNAL OF THE CHEMICAL SOCIETY-DALTON TRANSACTIONS, 1973, (15): : 1517 - 1519