共 50 条
Growth of ultra-long sodium tungsten oxide and tungsten oxide nanowires: Effects of impurity and residue deposition
被引:10
|作者:
Sheng, Tao
[1
]
Chavvakula, Padmanabha P.
[2
]
Cao, Baobao
[2
,3
]
Yue, Naili
[4
]
Zhang, Yong
[4
]
Zhang, Haitao
[2
]
机构:
[1] Univ N Carolina, Opt Sci & Engn Program, Charlotte, NC 28223 USA
[2] Univ N Carolina, Dept Mech Engn & Engn Sci, Charlotte, NC 28223 USA
[3] Southwest Jiaotong Univ, Sch Mat Sci & Engn, Chengdu 610031, Sichuan, Peoples R China
[4] Univ N Carolina, Dept Elect & Comp Engn, Charlotte, NC 28223 USA
基金:
美国国家科学基金会;
关键词:
Nanostructures;
Growth from vapor;
Chemical vapor deposition processes;
Tungstates;
Nanomaterials;
WO3;
SUPERCONDUCTIVITY;
NANOSTRUCTURES;
SURFACE;
NAXWO3;
D O I:
10.1016/j.jcrysgro.2014.03.013
中图分类号:
O7 [晶体学];
学科分类号:
0702 ;
070205 ;
0703 ;
080501 ;
摘要:
Ultra-long nanowires of sodium tungsten oxide and tungsten oxide were synthesized by simply hearing tungsten source under a low oxygen pressure environment. The nanowires have diameters of similar to 40 to 500 nrn and lengths from Lens to several hundred microns. The majority of the nanowires were found to be triclinic Na5W14O44 with small amount of monoclinic WO3. Triclinic Na2W4O13 microplares with a rectangular shape grown together with the nanowires were also identified. The formation of ultra long nanowires is explained by the vapor-solid (VS) growth mechanism. Effects of impurity and residue deposition have been thoroughly investigated. With a low concentration even smaller than 10 ppm (parts per million), the sodium impurity in the tungsten source could result in the formation of sodium tungsten phases. The growth of nanowires could be enhanced with the presence of residue deposition and the enhancement was attributed to the production of local vapor pressure from the residue deposition. 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:61 / 67
页数:7
相关论文