Fullerene Sugar Balls: A New Class of Biologically Active Fullerene Derivatives

被引:91
|
作者
Nierengarten, Iwona [1 ,2 ]
Nierengarten, Jean-Francois [1 ,2 ]
机构
[1] Univ Strasbourg, Lab Chim Mat Mol, F-67087 Strasbourg 2, France
[2] Ecole Europeenne Chim Polymeres & Mat, CNRS, UMR 7509, F-67087 Strasbourg 2, France
关键词
fullerenes; inhibitors; lectins; multivalent ligands; sugar; CATALYZED ALKYNE-AZIDE; FUNCTIONALIZED FULLERENE; HIV-1; PROTEASE; GENE-DELIVERY; C-60; DERIVATIVES; MULTIVALENT; CHEMISTRY; CYCLOADDITION; CORE; INHIBITION;
D O I
10.1002/asia.201400133
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Among the large variety of bioactive C-60 derivatives, fullerene derivatives substituted with sugar residues, that is, glycofullerenes, are of particular interest. The sugar residues are not only solubilizing groups; their intrinsic biological properties also provide additional appealing features to the conjugates. The most recent advances in the synthesis and the biological applications of glycofullerenes are summarized in the present review article with special emphasis on globular glycofullerenes, that is, fullerene sugar balls, constructed on a hexa-substituted fullerene scaffold. The high local concentration of carbohydrates around the C-60 core in fullerene sugar balls is perfectly suited to the binding of lectins through the glycoside cluster effect, and these compounds are potential anti-adhesive agents against bacterial infection. Moreover, mannosylated fullerene sugar balls have shown antiviral activity in an Ebola pseudotyped infection model. Finally, when substituted with peripheral iminosugars, dramatic multivalent effects have been observed for glycosidase inhibition. These unexpected observations have been rationalized by the interplay of interactions involving the catalytic site of the enzyme and non-glycone binding sites with lectin-like abilities.
引用
收藏
页码:1436 / 1444
页数:9
相关论文
共 50 条
  • [1] Biologically Active Fullerene Derivatives
    Sarkisyan, Z. M.
    RUSSIAN JOURNAL OF GENERAL CHEMISTRY, 2020, 90 (10) : 1853 - 1862
  • [2] Biologically Active Fullerene Derivatives
    Z. M. Sarkisyan
    Russian Journal of General Chemistry, 2020, 90 : 1853 - 1862
  • [3] Fullerene sugar balls
    Nierengarten, Jean-Francois
    Iehl, Julien
    Oerthel, Vincent
    Holler, Michel
    Illescas, Beatriz M.
    Munoz, Antonio
    Martin, Nazario
    Rojo, Javier
    Sanchez-Navarro, Macarena
    Cecioni, Samy
    Vidal, Sebastien
    Buffet, Kevin
    Durka, Maxime
    Vincent, Stephane P.
    CHEMICAL COMMUNICATIONS, 2010, 46 (22) : 3860 - 3862
  • [4] Carbon nanomaterials: Biologically active fullerene derivatives
    Bogdanovic, Gordana
    Djordjevic, Aleksandar
    SRPSKI ARHIV ZA CELOKUPNO LEKARSTVO, 2016, 144 (3-4) : 222 - 231
  • [5] Sugar balls:: Synthesis and supramolecular assembly of [60]fullerene glycoconjugates
    Kato, Haruhito
    Boettcher, Christoph
    Hirsch, Andreas
    EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, 2007, 2007 (16) : 2659 - 2666
  • [6] Fullerene derivatives as a new class of inhibitors of protein tyrosine phosphatases
    Kobzar, Oleksandr L.
    Trush, Viacheslav V.
    Tanchuk, Vsevolod Yu
    Zhilenkov, Alexander V.
    Troshin, Pavel A.
    Vovk, Andriy I.
    BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 2014, 24 (14) : 3175 - 3179
  • [7] Nitrofullerene CT complexes. A new class of fullerene derivatives
    Langer, JJ
    Gibinski, T
    ADVANCED MATERIALS FOR OPTICS AND ELECTRONICS, 1999, 9 (06): : 273 - 279
  • [9] Biologically active derivatives of fullerene C60. Current state and development prospects
    Fazylov, S. D.
    Nurkenov, O. A.
    Muldakhmetov, Z. M.
    Gazaliev, A. M.
    Arinova, A. E.
    Ibraev, M. K.
    Vlasova, L. M.
    Fazylov, A. S.
    BULLETIN OF THE UNIVERSITY OF KARAGANDA-CHEMISTRY, 2020, (99): : 11 - 20
  • [10] Stability of fullerene complexes with oxazoles as biologically active compounds
    Obernikhina, Nataliya
    Zhuravlova, Maryna
    Kachkovsky, Oleksiy
    Kobzar, Olexandr
    Brovarets, Volodymyr
    Pavlenko, Olena
    Kulish, Mykola
    Dmytrenko, Oksana
    APPLIED NANOSCIENCE, 2020, 10 (04) : 1345 - 1353