Performance evaluation of the particle swarm optimization algorithm to unambiguously estimate plasma parameters from incoherent scatter radar signals

被引:3
|
作者
Martinez-Ledesma, Miguel [1 ,2 ]
Jaramillo Montoya, Francisco [3 ]
机构
[1] Univ Santiago Chile, Phys Dept, Av Ecuador 3493, Santiago, Chile
[2] Univ Concepcion, CePIA, Dept Astron, Av Esteban Iturra S-N,Casilla 160-C, Concepcion, Chile
[3] Univ Chile, Dept Elect Engn, Av Tupper 2007, Santiago, Chile
来源
EARTH PLANETS AND SPACE | 2020年 / 72卷 / 01期
关键词
Temperature-ion composition ambiguity; Ionospheric plasma parameters; Incoherent scatter radar; Monte Carlo simulation; Optimization algorithms; Particle swarm optimization algorithm; WINTER F-REGION; ION COMPOSITION; THOMSON SCATTER; CONVERGENCE ANALYSIS; IONOSPHERE;
D O I
10.1186/s40623-020-01297-w
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Simultaneously estimating plasma parameters of the ionosphere presents a problem for the incoherent scatter radar (ISR) technique at altitudes between similar to 130 and similar to 300 km. Different mixtures of ion concentrations and temperatures generate almost identical backscattered signals, hindering the discrimination between plasma parameters. This temperature-ion composition ambiguity problem is commonly solved either by using models of ionospheric parameters or by the addition of parameters determined from the plasma line of the radar. Some studies demonstrated that it is also possible to unambiguously estimate ISR signals with very low signal fluctuation using the most frequently used non-linear least squares (NLLS) fitting algorithm. In a previous study, the unambiguous estimation performance of the particle swarm optimization (PSO) algorithm was evaluated, outperforming the standard NLLS algorithm fitting signals with very small fluctuations. Nevertheless, this study considered a confined search range of plasma parameters assuming a priori knowledge of the behavior of the ion composition and signals with very large SNR obtained at the Arecibo Observatory, which are not commonly feasible at other ISR facilities worldwide. In the present study, we conduct Monte Carlo simulations of PSO fittings to evaluate the performance of this algorithm at different signal fluctuation levels. We also determine the effect of adding different combinations of parameters known from the plasma line, different search ranges, and internal configurations of PSO parameters. Results suggest that similar performances are obtained by PSO and NLLS algorithms, but PSO has much larger computational requirements. The PSO algorithm obtains much lower convergences when no a priori information is provided. The a priori knowledge of N-e and Te/Ti\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T}_{e}/{T}_{i}$$\end{document} parameters shows better convergences and "correct" estimations. Also, results demonstrate that the addition of Ne\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${N}_{e}$$\end{document} and Te\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T}_{e}$$\end{document} parameters provides the most information to solve the ambiguity problem using both optimization algorithms.
引用
收藏
页数:25
相关论文
共 35 条
  • [1] Performance evaluation of the particle swarm optimization algorithm to unambiguously estimate plasma parameters from incoherent scatter radar signals
    Miguel Martínez-Ledesma
    Francisco Jaramillo Montoya
    Earth, Planets and Space, 72
  • [2] Application of particle swarm optimization method to incoherent scatter radar measurement of ionosphere parameters
    Wu, Li-Li
    Zhou, Qihou H.
    Chen, Tie-Jun
    Liang, J. J.
    Wu, Xin
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2015, 120 (09) : 8096 - 8110
  • [3] Influence of Algorithm Parameters of Bayesian Optimization, Genetic Algorithm, and Particle Swarm Optimization on Their Optimization Performance
    Wang, Zhi-Lei
    Ogawa, Toshio
    Adachi, Yoshitaka
    ADVANCED THEORY AND SIMULATIONS, 2019, 2 (10)
  • [4] Performance evaluation of TRIBES, an adaptive particle swarm optimization algorithm
    Cooren Y.
    Clerc M.
    Siarry P.
    Swarm Intelligence, 2009, 3 (2) : 149 - 178
  • [5] Implementing particle swarm optimization algorithm to estimate the mixture of twoWeibull parameters with censored data
    Wang, Fu-Kwun
    Huang, Ping-Ren
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2014, 84 (09) : 1975 - 1989
  • [6] Synchronous Machine Parameters Evaluation with a Hybrid Particle Swarm Optimization Algorithm
    Araujo, Bruno Tonsic
    Bernardes, Jose Vitor, Jr.
    Bortoni, Edson da Costa
    Lambert-Torres, Germano
    ELECTRIC POWER COMPONENTS AND SYSTEMS, 2017, 45 (17) : 1962 - 1971
  • [7] Process Parameters Optimization of Plasma Spraying Nanostructured Coating Based on Particle Swarm Optimization Algorithm
    Yang, Bin
    MATERIALS SCIENCE AND PROCESSING, ENVIRONMENTAL ENGINEERING AND INFORMATION TECHNOLOGIES, 2014, 665 : 68 - 71
  • [8] Performance evaluation of Black Hole Algorithm, Gravitational Search Algorithm and Particle Swarm Optimization
    Aliman, Mohamad Nizam
    Ibrahim, Zuwairie
    Naim, Fardila
    Nawawi, Sophan Wahyudi
    Sudin, Shahdan
    MALAYSIAN JOURNAL OF FUNDAMENTAL AND APPLIED SCIENCES, 2015, 11 (01): : 10 - 20
  • [9] Performance Evaluation of Particle Swarm Optimization Based Active Noise Control Algorithm
    Rout, Nirmal Kumar
    Das, Debi Prasad
    Panda, Ganapati
    SWARM, EVOLUTIONARY, AND MEMETIC COMPUTING, 2010, 6466 : 531 - +
  • [10] Quantum-inspired particle swarm optimization algorithm with performance evaluation of fused images
    Zhang Le
    Zhang Xinman
    Xu Xuebin
    Wang Dong
    Liu Jie
    Liu Yang
    OPTICA APPLICATA, 2013, 43 (04) : 679 - 691