Moser-Trudinger inequality for the complex Monge-Ampere equation

被引:7
|
作者
Wang, Jiaxiang [1 ]
Wang, Xu-jia [2 ]
Zhou, Bin [3 ]
机构
[1] Zhejiang Univ, Sch Math Sci, Hangzhou 310027, Peoples R China
[2] Australian Natl Univ, Ctr Math & Its Applicat, Canberra, ACT 2601, Australia
[3] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
关键词
Complex Monge-Ampere equation; Moser-Trudinger inequality; Regularity; ELLIPTIC-EQUATIONS; DIRICHLET PROBLEM; MANIFOLDS; ENERGY;
D O I
10.1016/j.jfa.2020.108765
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove a Moser-Trudinger type inequality for pluri-subharmonic functions vanishing on the boundary. Our proof uses a descent gradient flow for the complex Monge-Ampere functional. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:20
相关论文
共 50 条