Runge-Kutta methods adapted to the numerical integration of oscillatory problems

被引:45
|
作者
Franco, JM [1 ]
机构
[1] Univ Zaragoza, CPS Ingn, Dept Matemat Aplicada, Zaragoza 50015, Spain
关键词
adapted Runge-Kutta methods; oscillatory problems;
D O I
10.1016/j.apnum.2004.01.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
New Runge-Kutta methods specially adapted to the numerical integration of IVPs with oscillatory solutions are obtained. The coefficients of these methods are frequency-dependent such that certain particular oscillatory solutions are computed exactly (without truncation errors). Based on the B-series theory and on the rooted trees we derive the necessary and sufficient order conditions for this class of RK methods. With the help of these order conditions we construct explicit methods (up to order 4) as well as pairs of embedded RK methods of orders 4 and 3. Some numerical examples show the excellent behaviour when they compete with classical RK methods. (C) 2004 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:427 / 443
页数:17
相关论文
共 50 条
  • [1] New embedded pairs of explicit Runge-Kutta methods with FSAL properties adapted to the numerical integration of oscillatory problems
    Fang, Yonglei
    Song, Yongzhong
    Wu, Xinyuan
    PHYSICS LETTERS A, 2008, 372 (44) : 6551 - 6559
  • [2] Embedded Pairs of Exponentially Fitted Explicit Runge-Kutta Methods for the Numerical Integration of Oscillatory Problems
    Paris, A.
    Randez, L.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, 2008, 1048 : 1008 - 1010
  • [3] Two new embedded pairs of explicit Runge-Kutta methods adapted to the numerical solution of oscillatory problems
    Franco, J. M.
    Khiar, Y.
    Randez, L.
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 252 : 45 - 57
  • [4] RUNGE-KUTTA ALGORITHMS FOR OSCILLATORY PROBLEMS
    BETTIS, DG
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1979, 30 (04): : 699 - 704
  • [5] On the numerical integration of orthogonal flows with Runge-Kutta methods
    Calvo, M
    Laburta, MP
    Montijano, JI
    Rández, L
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 115 (1-2) : 121 - 135
  • [6] STABILITY PROPERTIES OF ADAPTED RUNGE-KUTTA METHODS
    STREHMEL, K
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1981, 61 (06): : 253 - 260
  • [7] Optimized Three-Stage Implicit Runge-Kutta Methods for the Numerical Solution of Problems with Oscillatory Solutions
    Tselios, N. G.
    Anastassi, Z. A.
    Simos, T. E.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 : 2252 - +
  • [8] A class of inverse Runge-Kutta schemes for the numerical integration of singular problems
    Odekunle, MR
    Oye, ND
    Adee, SO
    Ademiluyi, RA
    APPLIED MATHEMATICS AND COMPUTATION, 2004, 158 (01) : 149 - 158
  • [9] Optimized Two-Stage Implicit Runge-Kutta Methods for the Numerical Solution of Problems with Oscillatory Solutions
    Tselios, N. G.
    Anastassi, Z. A.
    Simos, T. E.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 : 2248 - +
  • [10] Numerical methods based on Gaussian quadrature and continuous Runge-Kutta integration for optimal control problems
    Diele, F
    Marangi, C
    Ragni, S
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2004, PT 2, 2004, 3044 : 971 - 978