Evoked potentials estimation in brain-computer interface using support vector machine

被引:0
|
作者
Guan, Jin-an [1 ]
机构
[1] S Cent Univ Nationalities, Sch Elect Engn, Wuhan 430074, Peoples R China
关键词
brain-computer interface; visual evoked potentials; feature selection; single-trial estimation; support vector machines;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The single-trial Visual Evoked Potentials estimation of brain-computer interface was investigated. Communication carriers between brain and computer were induced by "imitating-human-natural-reading" paradigm. With carefully signal preprocess and feature selection procedure, we explored the single-trial estimation of EEG using v-support vector machines in six subjects, and by comparison the results using P300 features from channel Fz and Pz, gained a satisfied classification accuracy of 91.3%, 88.9%, 91.5%, 92.1%, 90.2% and 90.1% respectively. The result suggests that the experimental paradigm is feasible and the speed of our mental speller can be boosted.
引用
收藏
页码:701 / 706
页数:6
相关论文
共 50 条
  • [1] Generalised Support Vector Machine for Brain-Computer Interface
    Trung Le
    Dat Tran
    Tuan Hoang
    Ma, Wanli
    Sharma, Dharmendra
    [J]. NEURAL INFORMATION PROCESSING, PT I, 2011, 7062 : 692 - +
  • [2] Visual evoked potentials for attentional gating in a brain-computer interface
    Geronimo, Andrew
    Schiff, Steven J.
    Kamrunnahar, Mst
    [J]. 2012 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2012, : 1745 - 1748
  • [3] Towards an independent brain-computer interface using steady state visual evoked potentials
    Allison, Brendan. Z.
    McFarland, Dennis J.
    Schalk, Gerwin
    Zheng, Shi Dong
    Jackson, Melody Moore
    Wolpaw, Jonathan R.
    [J]. CLINICAL NEUROPHYSIOLOGY, 2008, 119 (02) : 399 - 408
  • [4] An online brain-computer interface using non-flashing visual evoked potentials
    Liu, Tao
    Goldberg, Leslie
    Gao, Shangkai
    Hong, Bo
    [J]. JOURNAL OF NEURAL ENGINEERING, 2010, 7 (03)
  • [5] xDAWN Algorithm to Enhance Evoked Potentials: Application to Brain-Computer Interface
    Rivet, Bertrand
    Souloumiac, Antoine
    Attina, Virginie
    Gibert, Guillaume
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2009, 56 (08) : 2035 - 2043
  • [6] Enhance Evoked Potentials Detection Using RBF Neural Networks: Application to Brain-Computer Interface
    Soltanpour, Mohsen
    Faez, Karim
    Sharifian, Saeed
    Pourahmadi, Vahid
    [J]. 2016 2ND INTERNATIONAL CONFERENCE OF SIGNAL PROCESSING AND INTELLIGENT SYSTEMS (ICSPIS), 2016, : 12 - 17
  • [7] A Wearable Wireless Brain-Computer Interface Using Steady-State Visual Evoked Potentials
    Lim, Alfred
    Chia, Wai Chong
    [J]. 2018 3RD INTERNATIONAL CONFERENCE ON CONTROL, ROBOTICS AND CYBERNETICS (CRC), 2018, : 78 - 82
  • [8] Brain-computer Interface Based on Steady-state Visual Evoked Potentials
    Friganovic, K.
    Medved, M.
    Cifrek, M.
    [J]. 2016 39TH INTERNATIONAL CONVENTION ON INFORMATION AND COMMUNICATION TECHNOLOGY, ELECTRONICS AND MICROELECTRONICS (MIPRO), 2016, : 391 - 395
  • [9] Single-trial visual evoked potentials estimation using support vector machine
    Liu, Jinping
    [J]. ICNC 2007: THIRD INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, VOL 2, PROCEEDINGS, 2007, : 354 - 357
  • [10] Development of brain-computer interface using visual evoked potential
    Ogawa, Yuki
    Ushiba, Junichi
    Tomita, Yutaka
    Masakado, Yoshihisa
    Kimura, Akio
    Liu, Meigen
    [J]. NEUROSCIENCE RESEARCH, 2008, 61 : S54 - S54