Ring of quasimodular forms over a cocompact group.

被引:0
|
作者
Azaiez, Najib Ouled [1 ]
机构
[1] Inst Math Jussieu, F-75013 Paris, France
关键词
D O I
10.1016/j.crma.2006.09.028
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe the additive structure of the graded ring (M) over tilde* (Gamma) of quasimodular forms over any discrete and cocompact group Gamma subset of PSL(2, R). We show that this ring is not finitely generated. We calculate the exact number of new generators of weight k (even). This number is constant for k sufficiently large and equals dim(C) I/(I boolean AND I-2), where I and (I) over tilde are the ideals of modular forms and quasimodular forms, respectively, over Gamma of strictly positive weight.
引用
收藏
页码:511 / 514
页数:4
相关论文
共 50 条
  • [1] The ring of quasimodular forms for a cocompact group
    Azaiez, Najib Ouled
    JOURNAL OF NUMBER THEORY, 2008, 128 (07) : 1966 - 1988
  • [2] QUASIMODULAR FORMS AND COHOMOLOGY
    Lee, Min Ho
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2012, 86 (01) : 150 - 163
  • [3] On extremal quasimodular forms
    Kaneko, Masanobu
    Koike, Masao
    KYUSHU JOURNAL OF MATHEMATICS, 2006, 60 (02) : 457 - 470
  • [4] Virasoro blocks and quasimodular forms
    Diptarka Das
    Shouvik Datta
    Madhusudhan Raman
    Journal of High Energy Physics, 2020
  • [5] HEAT OPERATORS AND QUASIMODULAR FORMS
    Lee, Min Ho
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2010, 81 (03) : 514 - 522
  • [6] On weakly holomorphic quasimodular forms
    Meher, Jaban
    JOURNAL OF THE RAMANUJAN MATHEMATICAL SOCIETY, 2017, 32 (04) : 339 - 353
  • [7] Quasimodular forms and Jacobi-like forms
    YoungJu Choie
    Min Ho Lee
    Mathematische Zeitschrift, 2015, 280 : 643 - 667
  • [8] A converse theorem for quasimodular forms
    Charan, Mrityunjoy
    Meher, Jaban
    Shankhadhar, Karam Deo
    Singh, Ranveer Kumar
    FORUM MATHEMATICUM, 2022, 34 (02) : 547 - 564
  • [9] HILBERT MODULAR AND QUASIMODULAR FORMS
    Lee, Min Ho
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2015, 52 (02) : 177 - 192
  • [10] Quasimodular forms and Poincare series
    Lee, Min Ho
    ACTA ARITHMETICA, 2009, 137 (02) : 155 - 169