A stabilized finite element method for advection-diffusion equations on surfaces

被引:54
|
作者
Olshanskii, Maxim A. [1 ,2 ]
Reusken, Arnold [3 ]
Xu, Xianmin [4 ]
机构
[1] Univ Houston, Dept Math, Houston, TX 77204 USA
[2] Moscow MV Lomonosov State Univ, Dept Mech & Math, Moscow 119899, Russia
[3] Rhein Westfal TH Aachen, Inst Geometrie & Prakt Math, D-52056 Aachen, Germany
[4] Chinese Acad Sci, Inst Computat Math & Sci Engn Comp, LSEC, NCMIS,AMSS, Beijing 100190, Peoples R China
基金
俄罗斯基础研究基金会; 中国国家自然科学基金;
关键词
surface PDE; finite element method; transport equations; advection-diffusion equation; SUPG stabilization;
D O I
10.1093/imanum/drt016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A recently developed Eulerian finite element method (FEM) is applied to solve advection-diffusion equations posed on hypersurfaces. When transport processes on a surface dominate over diffusion, FEMs tend to be unstable unless the mesh is sufficiently fine. The paper introduces a stabilized FE formulation based on the streamline upwind Petrov-Galerkin (SUPG) technique. An error analysis of the method is given. Results of numerical experiments are presented, which illustrate the performance of the stabilized method.
引用
收藏
页码:732 / 758
页数:27
相关论文
共 50 条